# Copyright 2025 the LlamaFactory team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import torch from PIL import Image from llamafactory.data import get_template_and_fix_tokenizer from llamafactory.data.collator import MultiModalDataCollatorForSeq2Seq, prepare_4d_attention_mask from llamafactory.extras.constants import IGNORE_INDEX from llamafactory.hparams import get_infer_args from llamafactory.model import load_tokenizer TINY_LLAMA = os.getenv("TINY_LLAMA", "llamafactory/tiny-random-Llama-3") def test_base_collator(): model_args, data_args, *_ = get_infer_args({"model_name_or_path": TINY_LLAMA, "template": "default"}) tokenizer_module = load_tokenizer(model_args) template = get_template_and_fix_tokenizer(tokenizer_module["tokenizer"], data_args) data_collator = MultiModalDataCollatorForSeq2Seq( template=template, pad_to_multiple_of=8, label_pad_token_id=IGNORE_INDEX, **tokenizer_module, ) p = tokenizer_module["tokenizer"].pad_token_id q = IGNORE_INDEX features = [ { "input_ids": [0, 1, 2, 3, 4, 5], "attention_mask": [1, 1, 1, 1, 1, 1], "labels": [q, q, 2, 3, 4, 5], }, { "input_ids": [6, 7], "attention_mask": [1, 1], "labels": [q, 7], }, ] batch_input = data_collator(features) expected_input = { "input_ids": [ [0, 1, 2, 3, 4, 5, p, p], [6, 7, p, p, p, p, p, p], ], "attention_mask": [ [1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 0, 0, 0, 0, 0, 0], ], "labels": [ [q, q, 2, 3, 4, 5, q, q], [q, 7, q, q, q, q, q, q], ], } for k in batch_input.keys(): assert batch_input[k].eq(torch.tensor(expected_input[k])).all() def test_multimodal_collator(): model_args, data_args, *_ = get_infer_args( {"model_name_or_path": "Qwen/Qwen2-VL-7B-Instruct", "template": "qwen2_vl"} ) tokenizer_module = load_tokenizer(model_args) template = get_template_and_fix_tokenizer(tokenizer_module["tokenizer"], data_args) data_collator = MultiModalDataCollatorForSeq2Seq( template=template, pad_to_multiple_of=4, label_pad_token_id=IGNORE_INDEX, **tokenizer_module, ) p = tokenizer_module["tokenizer"].pad_token_id q = IGNORE_INDEX s = tokenizer_module["tokenizer"].convert_tokens_to_ids("<|vision_start|>") e = tokenizer_module["tokenizer"].convert_tokens_to_ids("<|vision_end|>") m = tokenizer_module["tokenizer"].convert_tokens_to_ids("<|image_pad|>") fake_image = Image.new("RGB", (64, 64), (255, 255, 255)) features = [ { "input_ids": [0, 1, 2, 3], "attention_mask": [1, 1, 1, 1], "labels": [0, 1, 2, 3], }, ] batch_input = data_collator(features) expected_input = { "input_ids": [ [0, 1, 2, 3, s, m, m, m, m, e, p, p], ], "attention_mask": [ [1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0], ], "labels": [ [0, 1, 2, 3, q, q, q, q, q, q, q, q], ], **tokenizer_module["processor"].image_processor(fake_image), } for k in batch_input.keys(): assert batch_input[k].eq(torch.tensor(expected_input[k])).all() def test_4d_attention_mask(): o = 0.0 x = torch.finfo(torch.float16).min attention_mask_with_indices = torch.tensor( [ [1, 1, 2, 2, 2, 0], [1, 2, 2, 3, 3, 3], ] ) attention_mask_computed = prepare_4d_attention_mask(attention_mask_with_indices, torch.float16) attention_mask_expected = torch.tensor( [ [ [ [o, x, x, x, x, x], [o, o, x, x, x, x], [x, x, o, x, x, x], [x, x, o, o, x, x], [x, x, o, o, o, x], [x, x, x, x, x, x], ] ], [ [ [o, x, x, x, x, x], [x, o, x, x, x, x], [x, o, o, x, x, x], [x, x, x, o, x, x], [x, x, x, o, o, x], [x, x, x, o, o, o], ] ], ], dtype=torch.float16, ) assert list(attention_mask_computed.size()) == [2, 1, 6, 6] assert torch.all(attention_mask_computed == attention_mask_expected)