# Copyright 2025 the LlamaFactory team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass from typing import TYPE_CHECKING, Dict, List, Optional, Sequence, Tuple, Type, Union from typing_extensions import override from ..extras import logging from ..extras.misc import check_version from .data_utils import Role from .formatter import EmptyFormatter, FunctionFormatter, StringFormatter, ToolFormatter from .mm_plugin import get_mm_plugin if TYPE_CHECKING: from transformers import PreTrainedTokenizer from ..hparams import DataArguments from .formatter import SLOTS, Formatter from .mm_plugin import BasePlugin from .tool_utils import FunctionCall logger = logging.get_logger(__name__) @dataclass class Template: format_user: "Formatter" format_assistant: "Formatter" format_system: "Formatter" format_function: "Formatter" format_observation: "Formatter" format_tools: "Formatter" format_prefix: "Formatter" default_system: str stop_words: List[str] thought_words: Tuple[str, str] efficient_eos: bool replace_eos: bool replace_jinja_template: bool mm_plugin: "BasePlugin" def encode_oneturn( self, tokenizer: "PreTrainedTokenizer", messages: Sequence[Dict[str, str]], system: Optional[str] = None, tools: Optional[str] = None, ) -> Tuple[List[int], List[int]]: r""" Returns a single pair of token ids representing prompt and response respectively. """ encoded_messages = self._encode(tokenizer, messages, system, tools) prompt_ids = [] for encoded_ids in encoded_messages[:-1]: prompt_ids += encoded_ids response_ids = encoded_messages[-1] return prompt_ids, response_ids def encode_multiturn( self, tokenizer: "PreTrainedTokenizer", messages: Sequence[Dict[str, str]], system: Optional[str] = None, tools: Optional[str] = None, ) -> List[Tuple[List[int], List[int]]]: r""" Returns multiple pairs of token ids representing prompts and responses respectively. """ encoded_messages = self._encode(tokenizer, messages, system, tools) return [(encoded_messages[i], encoded_messages[i + 1]) for i in range(0, len(encoded_messages), 2)] def extract_tool(self, content: str) -> Union[str, List["FunctionCall"]]: r""" Extracts tool message. """ return self.format_tools.extract(content) def get_stop_token_ids(self, tokenizer: "PreTrainedTokenizer") -> List[int]: r""" Returns stop token ids. """ stop_token_ids = {tokenizer.eos_token_id} for token in self.stop_words: stop_token_ids.add(tokenizer.convert_tokens_to_ids(token)) return list(stop_token_ids) def _convert_elements_to_ids(self, tokenizer: "PreTrainedTokenizer", elements: "SLOTS") -> List[int]: r""" Converts elements to token ids. """ token_ids = [] for elem in elements: if isinstance(elem, str): if len(elem) != 0: token_ids += tokenizer.encode(elem, add_special_tokens=False) elif isinstance(elem, dict): token_ids += [tokenizer.convert_tokens_to_ids(elem.get("token"))] elif isinstance(elem, set): if "bos_token" in elem and tokenizer.bos_token_id is not None: token_ids += [tokenizer.bos_token_id] elif "eos_token" in elem and tokenizer.eos_token_id is not None: token_ids += [tokenizer.eos_token_id] else: raise ValueError(f"Input must be string, set[str] or dict[str, str], got {type(elem)}") return token_ids def _encode( self, tokenizer: "PreTrainedTokenizer", messages: Sequence[Dict[str, str]], system: Optional[str], tools: Optional[str], ) -> List[List[int]]: r""" Encodes formatted inputs to pairs of token ids. Turn 0: prefix + system + query resp Turn t: query resp """ system = system or self.default_system encoded_messages = [] for i, message in enumerate(messages): elements = [] if i == 0: elements += self.format_prefix.apply() if system or tools: tool_text = self.format_tools.apply(content=tools)[0] if tools else "" elements += self.format_system.apply(content=(system + tool_text)) if message["role"] == Role.USER.value: elements += self.format_user.apply(content=message["content"], idx=str(i // 2)) elif message["role"] == Role.ASSISTANT.value: elements += self.format_assistant.apply(content=message["content"]) elif message["role"] == Role.OBSERVATION.value: elements += self.format_observation.apply(content=message["content"]) elif message["role"] == Role.FUNCTION.value: elements += self.format_function.apply(content=message["content"]) else: raise NotImplementedError("Unexpected role: {}".format(message["role"])) encoded_messages.append(self._convert_elements_to_ids(tokenizer, elements)) return encoded_messages @staticmethod def _add_or_replace_eos_token(tokenizer: "PreTrainedTokenizer", eos_token: str) -> None: r""" Adds or replaces eos token to the tokenizer. """ is_added = tokenizer.eos_token_id is None num_added_tokens = tokenizer.add_special_tokens({"eos_token": eos_token}) if is_added: logger.info_rank0(f"Add eos token: {tokenizer.eos_token}.") else: logger.info_rank0(f"Replace eos token: {tokenizer.eos_token}.") if num_added_tokens > 0: logger.warning_rank0("New tokens have been added, make sure `resize_vocab` is True.") def fix_special_tokens(self, tokenizer: "PreTrainedTokenizer") -> None: r""" Adds eos token and pad token to the tokenizer. """ stop_words = self.stop_words if self.replace_eos: if not stop_words: raise ValueError("Stop words are required to replace the EOS token.") self._add_or_replace_eos_token(tokenizer, eos_token=stop_words[0]) stop_words = stop_words[1:] if tokenizer.eos_token_id is None: self._add_or_replace_eos_token(tokenizer, eos_token="<|endoftext|>") if tokenizer.pad_token_id is None: tokenizer.pad_token = tokenizer.eos_token logger.info_rank0(f"Add pad token: {tokenizer.pad_token}") if stop_words: num_added_tokens = tokenizer.add_special_tokens( dict(additional_special_tokens=stop_words), replace_additional_special_tokens=False ) logger.info_rank0("Add {} to stop words.".format(",".join(stop_words))) if num_added_tokens > 0: logger.warning_rank0("New tokens have been added, make sure `resize_vocab` is True.") @staticmethod def _jinja_escape(content: str) -> str: r""" Escape single quotes in content. """ return content.replace("'", r"\'") @staticmethod def _convert_slots_to_jinja(slots: "SLOTS", tokenizer: "PreTrainedTokenizer", placeholder: str = "content") -> str: r""" Converts slots to jinja template. """ slot_items = [] for slot in slots: if isinstance(slot, str): slot_pieces = slot.split("{{content}}") if slot_pieces[0]: slot_items.append("'" + Template._jinja_escape(slot_pieces[0]) + "'") if len(slot_pieces) > 1: slot_items.append(placeholder) if slot_pieces[1]: slot_items.append("'" + Template._jinja_escape(slot_pieces[1]) + "'") elif isinstance(slot, set): # do not use {{ eos_token }} since it may be replaced if "bos_token" in slot and tokenizer.bos_token_id is not None: slot_items.append("'" + tokenizer.bos_token + "'") elif "eos_token" in slot and tokenizer.eos_token_id is not None: slot_items.append("'" + tokenizer.eos_token + "'") elif isinstance(slot, dict): raise ValueError("Dict is not supported.") return " + ".join(slot_items) def _get_jinja_template(self, tokenizer: "PreTrainedTokenizer") -> str: r""" Returns the jinja template. """ prefix = self._convert_slots_to_jinja(self.format_prefix.apply(), tokenizer) system = self._convert_slots_to_jinja(self.format_system.apply(), tokenizer, placeholder="system_message") user = self._convert_slots_to_jinja(self.format_user.apply(), tokenizer) assistant = self._convert_slots_to_jinja(self.format_assistant.apply(), tokenizer) jinja_template = "" if prefix: jinja_template += "{{ " + prefix + " }}" if self.default_system: jinja_template += "{% set system_message = '" + self._jinja_escape(self.default_system) + "' %}" jinja_template += ( "{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}" "{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% endif %}" "{% if system_message is defined %}{{ " + system + " }}{% endif %}" "{% for message in loop_messages %}" "{% set content = message['content'] %}" "{% if message['role'] == 'user' %}" "{{ " + user + " }}" "{% elif message['role'] == 'assistant' %}" "{{ " + assistant + " }}" "{% endif %}" "{% endfor %}" ) return jinja_template def fix_jinja_template(self, tokenizer: "PreTrainedTokenizer") -> None: r""" Replaces the jinja template in the tokenizer. """ if tokenizer.chat_template is None or self.replace_jinja_template: try: tokenizer.chat_template = self._get_jinja_template(tokenizer) except ValueError as e: logger.info_rank0(f"Cannot add this chat template to tokenizer: {e}.") @staticmethod def _convert_slots_to_ollama( slots: "SLOTS", tokenizer: "PreTrainedTokenizer", placeholder: str = "content" ) -> str: r""" Converts slots to ollama template. """ slot_items = [] for slot in slots: if isinstance(slot, str): slot_pieces = slot.split("{{content}}") if slot_pieces[0]: slot_items.append(slot_pieces[0]) if len(slot_pieces) > 1: slot_items.append("{{ " + placeholder + " }}") if slot_pieces[1]: slot_items.append(slot_pieces[1]) elif isinstance(slot, set): # do not use {{ eos_token }} since it may be replaced if "bos_token" in slot and tokenizer.bos_token_id is not None: slot_items.append(tokenizer.bos_token) elif "eos_token" in slot and tokenizer.eos_token_id is not None: slot_items.append(tokenizer.eos_token) elif isinstance(slot, dict): raise ValueError("Dict is not supported.") return "".join(slot_items) def _get_ollama_template(self, tokenizer: "PreTrainedTokenizer") -> str: r""" Returns the ollama template. """ prefix = self._convert_slots_to_ollama(self.format_prefix.apply(), tokenizer) system = self._convert_slots_to_ollama(self.format_system.apply(), tokenizer, placeholder=".System") user = self._convert_slots_to_ollama(self.format_user.apply(), tokenizer, placeholder=".Content") assistant = self._convert_slots_to_ollama(self.format_assistant.apply(), tokenizer, placeholder=".Content") return ( f"{prefix}{{{{ if .System }}}}{system}{{{{ end }}}}" f"""{{{{ range .Messages }}}}{{{{ if eq .Role "user" }}}}{user}""" f"""{{{{ else if eq .Role "assistant" }}}}{assistant}{{{{ end }}}}{{{{ end }}}}""" ) def get_ollama_modelfile(self, tokenizer: "PreTrainedTokenizer") -> str: r""" Returns the ollama modelfile. TODO: support function calling. """ modelfile = "# ollama modelfile auto-generated by llamafactory\n\n" modelfile += f'FROM .\n\nTEMPLATE """{self._get_ollama_template(tokenizer)}"""\n\n' if self.default_system: modelfile += f'SYSTEM """{self.default_system}"""\n\n' for stop_token_id in self.get_stop_token_ids(tokenizer): modelfile += f'PARAMETER stop "{tokenizer.convert_ids_to_tokens(stop_token_id)}"\n' modelfile += "PARAMETER num_ctx 4096\n" return modelfile @dataclass class Llama2Template(Template): @override def _encode( self, tokenizer: "PreTrainedTokenizer", messages: Sequence[Dict[str, str]], system: str, tools: str, ) -> List[List[int]]: system = system or self.default_system encoded_messages = [] for i, message in enumerate(messages): elements = [] system_text = "" if i == 0: elements += self.format_prefix.apply() if system or tools: tool_text = self.format_tools.apply(content=tools)[0] if tools else "" system_text = self.format_system.apply(content=(system + tool_text))[0] if message["role"] == Role.USER.value: elements += self.format_user.apply(content=system_text + message["content"]) elif message["role"] == Role.ASSISTANT.value: elements += self.format_assistant.apply(content=message["content"]) elif message["role"] == Role.OBSERVATION.value: elements += self.format_observation.apply(content=message["content"]) elif message["role"] == Role.FUNCTION.value: elements += self.format_function.apply(content=message["content"]) else: raise NotImplementedError("Unexpected role: {}".format(message["role"])) encoded_messages.append(self._convert_elements_to_ids(tokenizer, elements)) return encoded_messages def _get_jinja_template(self, tokenizer: "PreTrainedTokenizer") -> str: prefix = self._convert_slots_to_jinja(self.format_prefix.apply(), tokenizer) system_message = self._convert_slots_to_jinja( self.format_system.apply(), tokenizer, placeholder="system_message" ) user_message = self._convert_slots_to_jinja(self.format_user.apply(), tokenizer) assistant_message = self._convert_slots_to_jinja(self.format_assistant.apply(), tokenizer) jinja_template = "" if prefix: jinja_template += "{{ " + prefix + " }}" if self.default_system: jinja_template += "{% set system_message = '" + self._jinja_escape(self.default_system) + "' %}" jinja_template += ( "{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}" "{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% endif %}" "{% for message in loop_messages %}" "{% if loop.index0 == 0 and system_message is defined %}" "{% set content = " + system_message + " + message['content'] %}" "{% else %}{% set content = message['content'] %}{% endif %}" "{% if message['role'] == 'user' %}" "{{ " + user_message + " }}" "{% elif message['role'] == 'assistant' %}" "{{ " + assistant_message + " }}" "{% endif %}" "{% endfor %}" ) return jinja_template TEMPLATES: Dict[str, "Template"] = {} def register_template( name: str, format_user: Optional["Formatter"] = None, format_assistant: Optional["Formatter"] = None, format_system: Optional["Formatter"] = None, format_function: Optional["Formatter"] = None, format_observation: Optional["Formatter"] = None, format_tools: Optional["Formatter"] = None, format_prefix: Optional["Formatter"] = None, default_system: str = "", stop_words: Optional[Sequence[str]] = None, thought_words: Optional[Tuple[str, str]] = None, efficient_eos: bool = False, replace_eos: bool = False, replace_jinja_template: bool = False, mm_plugin: "BasePlugin" = get_mm_plugin(name="base"), template_class: Type["Template"] = Template, ) -> None: r""" Registers a chat template. To add the following chat template: ``` user prompt here model response here user prompt here model response here ``` The corresponding code should be: ``` register_template( name="custom", format_user=StringFormatter(slots=["{{content}}\n"]), format_assistant=StringFormatter(slots=["{{content}}\n"]), format_prefix=EmptyFormatter(""), ) ``` """ if name in TEMPLATES: raise ValueError(f"Template {name} already exists.") default_slots = ["{{content}}"] if efficient_eos else ["{{content}}", {"eos_token"}] default_user_formatter = StringFormatter(slots=["{{content}}"]) default_assistant_formatter = StringFormatter(slots=default_slots) default_function_formatter = FunctionFormatter(slots=default_slots, tool_format="default") default_tool_formatter = ToolFormatter(tool_format="default") default_prefix_formatter = EmptyFormatter() TEMPLATES[name] = template_class( format_user=format_user or default_user_formatter, format_assistant=format_assistant or default_assistant_formatter, format_system=format_system or default_user_formatter, format_function=format_function or default_function_formatter, format_observation=format_observation or format_user or default_user_formatter, format_tools=format_tools or default_tool_formatter, format_prefix=format_prefix or default_prefix_formatter, default_system=default_system, stop_words=stop_words or [], thought_words=thought_words or ("", ""), efficient_eos=efficient_eos, replace_eos=replace_eos, replace_jinja_template=replace_jinja_template, mm_plugin=mm_plugin, ) def parse_template(tokenizer: "PreTrainedTokenizer") -> "Template": r""" Extracts a chat template from the tokenizer. """ def find_diff(short_str: str, long_str: str) -> str: i, j = 0, 0 diff = "" while i < len(short_str) and j < len(long_str): if short_str[i] == long_str[j]: i += 1 j += 1 else: diff += long_str[j] j += 1 return diff prefix = tokenizer.decode(tokenizer.encode("")) messages = [{"role": "system", "content": "{{content}}"}] system_slot = tokenizer.apply_chat_template(messages, add_generation_prompt=False, tokenize=False)[len(prefix) :] messages = [{"role": "system", "content": ""}, {"role": "user", "content": "{{content}}"}] user_slot_empty_system = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False) user_slot_empty_system = user_slot_empty_system[len(prefix) :] messages = [{"role": "user", "content": "{{content}}"}] user_slot = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False) user_slot = user_slot[len(prefix) :] messages = [{"role": "user", "content": "{{content}}"}, {"role": "assistant", "content": "{{content}}"}] assistant_slot = tokenizer.apply_chat_template(messages, add_generation_prompt=False, tokenize=False) assistant_slot = assistant_slot[len(prefix) + len(user_slot) :] if len(user_slot) > len(user_slot_empty_system): default_system = find_diff(user_slot_empty_system, user_slot) sole_system = system_slot.replace("{{content}}", default_system, 1) user_slot = user_slot[len(sole_system) :] else: # if defaut_system is empty, user_slot_empty_system will be longer than user_slot default_system = "" return Template( format_user=StringFormatter(slots=[user_slot]), format_assistant=StringFormatter(slots=[assistant_slot]), format_system=StringFormatter(slots=[system_slot]), format_function=FunctionFormatter(slots=[assistant_slot], tool_format="default"), format_observation=StringFormatter(slots=[user_slot]), format_tools=ToolFormatter(tool_format="default"), format_prefix=EmptyFormatter(slots=[prefix]) if prefix else EmptyFormatter(), default_system=default_system, stop_words=[], thought_words=("", ""), efficient_eos=False, replace_eos=False, replace_jinja_template=False, mm_plugin=get_mm_plugin(name="base"), ) def get_template_and_fix_tokenizer(tokenizer: "PreTrainedTokenizer", data_args: "DataArguments") -> "Template": r""" Gets chat template and fixes the tokenizer. """ if data_args.template is None: if isinstance(tokenizer.chat_template, str): logger.warning_rank0("`template` was not specified, try parsing the chat template from the tokenizer.") template = parse_template(tokenizer) else: logger.warning_rank0("`template` was not specified, use `empty` template.") template = TEMPLATES["empty"] # placeholder else: if data_args.template not in TEMPLATES: raise ValueError(f"Template {data_args.template} does not exist.") template = TEMPLATES[data_args.template] if template.mm_plugin.__class__.__name__ != "BasePlugin": check_version("transformers>=4.45.0") if data_args.train_on_prompt and template.efficient_eos: raise ValueError("Current template does not support `train_on_prompt`.") if data_args.tool_format is not None: logger.info_rank0(f"Using tool format: {data_args.tool_format}.") default_slots = ["{{content}}"] if template.efficient_eos else ["{{content}}", {"eos_token"}] template.format_function = FunctionFormatter(slots=default_slots, tool_format=data_args.tool_format) template.format_tools = ToolFormatter(tool_format=data_args.tool_format) template.fix_special_tokens(tokenizer) template.fix_jinja_template(tokenizer) return template register_template( name="alpaca", format_user=StringFormatter(slots=["### Instruction:\n{{content}}\n\n### Response:\n"]), format_assistant=StringFormatter(slots=["{{content}}", {"eos_token"}, "\n\n"]), default_system=( "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n" ), replace_jinja_template=True, ) register_template( name="aquila", format_user=StringFormatter(slots=["Human: {{content}}###Assistant:"]), format_assistant=StringFormatter(slots=["{{content}}###"]), format_system=StringFormatter(slots=["System: {{content}}###"]), default_system=( "A chat between a curious human and an artificial intelligence assistant. " "The assistant gives helpful, detailed, and polite answers to the human's questions." ), stop_words=[""], ) register_template( name="atom", format_user=StringFormatter( slots=[{"bos_token"}, "Human: {{content}}\n", {"eos_token"}, {"bos_token"}, "Assistant:"] ), format_assistant=StringFormatter(slots=["{{content}}\n", {"eos_token"}]), ) register_template( name="baichuan", format_user=StringFormatter(slots=[{"token": ""}, "{{content}}", {"token": ""}]), efficient_eos=True, ) register_template( name="baichuan2", format_user=StringFormatter(slots=["{{content}}"]), efficient_eos=True, ) register_template( name="bailing", format_user=StringFormatter(slots=["HUMAN{{content}}ASSISTANT"]), format_system=StringFormatter(slots=["SYSTEM{{content}}"]), format_observation=StringFormatter(slots=["OBSERVATION{{content}}ASSISTANT"]), stop_words=["<|endoftext|>"], efficient_eos=True, ) register_template( name="belle", format_user=StringFormatter(slots=["Human: {{content}}\n\nBelle: "]), format_assistant=StringFormatter(slots=["{{content}}", {"eos_token"}, "\n\n"]), format_prefix=EmptyFormatter(slots=[{"bos_token"}]), ) register_template( name="bluelm", format_user=StringFormatter(slots=[{"token": "[|Human|]:"}, "{{content}}", {"token": "[|AI|]:"}]), ) register_template( name="breeze", format_user=StringFormatter(slots=["[INST] {{content}} [/INST] "]), format_prefix=EmptyFormatter(slots=[{"bos_token"}]), efficient_eos=True, ) register_template( name="chatglm2", format_user=StringFormatter(slots=["[Round {{idx}}]\n\n问:{{content}}\n\n答:"]), format_prefix=EmptyFormatter(slots=[{"token": "[gMASK]"}, {"token": "sop"}]), efficient_eos=True, ) register_template( name="chatglm3", format_user=StringFormatter(slots=[{"token": "<|user|>"}, "\n", "{{content}}", {"token": "<|assistant|>"}]), format_assistant=StringFormatter(slots=["\n", "{{content}}"]), format_system=StringFormatter(slots=[{"token": "<|system|>"}, "\n", "{{content}}"]), format_function=FunctionFormatter(slots=["{{content}}"], tool_format="glm4"), format_observation=StringFormatter( slots=[{"token": "<|observation|>"}, "\n", "{{content}}", {"token": "<|assistant|>"}] ), format_tools=ToolFormatter(tool_format="glm4"), format_prefix=EmptyFormatter(slots=[{"token": "[gMASK]"}, {"token": "sop"}]), stop_words=["<|user|>", "<|observation|>"], efficient_eos=True, ) register_template( name="chatml", format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]), format_assistant=StringFormatter(slots=["{{content}}<|im_end|>\n"]), format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]), format_observation=StringFormatter(slots=["<|im_start|>tool\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]), stop_words=["<|im_end|>", "<|im_start|>"], replace_eos=True, replace_jinja_template=True, ) # copied from chatml template register_template( name="chatml_de", format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]), format_assistant=StringFormatter(slots=["{{content}}<|im_end|>\n"]), format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]), format_observation=StringFormatter(slots=["<|im_start|>tool\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]), default_system="Du bist ein freundlicher und hilfsbereiter KI-Assistent.", stop_words=["<|im_end|>", "<|im_start|>"], replace_eos=True, replace_jinja_template=True, ) register_template( name="codegeex2", format_prefix=EmptyFormatter(slots=[{"token": "[gMASK]"}, {"token": "sop"}]), ) register_template( name="codegeex4", format_user=StringFormatter(slots=["<|user|>\n{{content}}<|assistant|>\n"]), format_system=StringFormatter(slots=["<|system|>\n{{content}}"]), format_function=FunctionFormatter(slots=["{{content}}"], tool_format="glm4"), format_observation=StringFormatter(slots=["<|observation|>\n{{content}}<|assistant|>\n"]), format_tools=ToolFormatter(tool_format="glm4"), format_prefix=EmptyFormatter(slots=["[gMASK]"]), default_system=( "你是一位智能编程助手,你叫CodeGeeX。你会为用户回答关于编程、代码、计算机方面的任何问题," "并提供格式规范、可以执行、准确安全的代码,并在必要时提供详细的解释。" ), stop_words=["<|user|>", "<|observation|>"], efficient_eos=True, ) register_template( name="cohere", format_user=StringFormatter( slots=[ ( "<|START_OF_TURN_TOKEN|><|USER_TOKEN|>{{content}}<|END_OF_TURN_TOKEN|>" "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>" ) ] ), format_system=StringFormatter(slots=["<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>{{content}}<|END_OF_TURN_TOKEN|>"]), format_prefix=EmptyFormatter(slots=[{"bos_token"}]), ) register_template( name="cpm", format_user=StringFormatter(slots=["<用户>{{content}}"]), format_prefix=EmptyFormatter(slots=[{"bos_token"}]), ) # copied from chatml template register_template( name="cpm3", format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]), format_assistant=StringFormatter(slots=["{{content}}<|im_end|>\n"]), format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]), format_prefix=EmptyFormatter(slots=[{"bos_token"}]), stop_words=["<|im_end|>"], ) # copied from chatml template register_template( name="dbrx", format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]), format_assistant=StringFormatter(slots=["{{content}}<|im_end|>\n"]), format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]), format_observation=StringFormatter(slots=["<|im_start|>tool\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]), default_system=( "You are DBRX, created by Databricks. You were last updated in December 2023. " "You answer questions based on information available up to that point.\n" "YOU PROVIDE SHORT RESPONSES TO SHORT QUESTIONS OR STATEMENTS, but provide thorough " "responses to more complex and open-ended questions.\nYou assist with various tasks, " "from writing to coding (using markdown for code blocks — remember to use ``` with " "code, JSON, and tables).\n(You do not have real-time data access or code execution " "capabilities. You avoid stereotyping and provide balanced perspectives on " "controversial topics. You do not provide song lyrics, poems, or news articles and " "do not divulge details of your training data.)\nThis is your system prompt, " "guiding your responses. Do not reference it, just respond to the user. If you find " "yourself talking about this message, stop. You should be responding appropriately " "and usually that means not mentioning this.\nYOU DO NOT MENTION ANY OF THIS INFORMATION " "ABOUT YOURSELF UNLESS THE INFORMATION IS DIRECTLY PERTINENT TO THE USER'S QUERY." ), stop_words=["<|im_end|>"], ) register_template( name="deepseek", format_user=StringFormatter(slots=["User: {{content}}\n\nAssistant:"]), format_system=StringFormatter(slots=["{{content}}\n\n"]), format_prefix=EmptyFormatter(slots=[{"bos_token"}]), ) register_template( name="deepseek3", format_user=StringFormatter(slots=["<|User|>{{content}}<|Assistant|>"]), format_prefix=EmptyFormatter(slots=[{"bos_token"}]), ) register_template( name="deepseekcoder", format_user=StringFormatter(slots=["### Instruction:\n{{content}}\n### Response:"]), format_assistant=StringFormatter(slots=["\n{{content}}\n<|EOT|>\n"]), format_prefix=EmptyFormatter(slots=[{"bos_token"}]), default_system=( "You are an AI programming assistant, utilizing the DeepSeek Coder model, " "developed by DeepSeek Company, and you only answer questions related to computer science. " "For politically sensitive questions, security and privacy issues, " "and other non-computer science questions, you will refuse to answer.\n" ), ) register_template( name="default", format_user=StringFormatter(slots=["Human: {{content}}\nAssistant:"]), format_assistant=StringFormatter(slots=["{{content}}", {"eos_token"}, "\n"]), format_system=StringFormatter(slots=["System: {{content}}\n"]), ) register_template( name="empty", format_assistant=StringFormatter(slots=["{{content}}"]), ) register_template( name="exaone", format_user=StringFormatter(slots=["[|user|]{{content}}\n[|assistant|]"]), format_assistant=StringFormatter(slots=["{{content}}", {"eos_token"}, "\n"]), format_system=StringFormatter(slots=["[|system|]{{content}}[|endofturn|]\n"]), ) register_template( name="falcon", format_user=StringFormatter(slots=["User: {{content}}\nFalcon:"]), format_assistant=StringFormatter(slots=["{{content}}\n"]), efficient_eos=True, ) register_template( name="fewshot", format_assistant=StringFormatter(slots=["{{content}}\n\n"]), efficient_eos=True, ) register_template( name="gemma", format_user=StringFormatter(slots=["user\n{{content}}\nmodel\n"]), format_assistant=StringFormatter(slots=["{{content}}\n"]), format_observation=StringFormatter( slots=["tool\n{{content}}\nmodel\n"] ), format_prefix=EmptyFormatter(slots=[{"bos_token"}]), ) register_template( name="glm4", format_user=StringFormatter(slots=["<|user|>\n{{content}}<|assistant|>"]), format_assistant=StringFormatter(slots=["\n{{content}}"]), format_system=StringFormatter(slots=["<|system|>\n{{content}}"]), format_function=FunctionFormatter(slots=["{{content}}"], tool_format="glm4"), format_observation=StringFormatter(slots=["<|observation|>\n{{content}}<|assistant|>"]), format_tools=ToolFormatter(tool_format="glm4"), format_prefix=EmptyFormatter(slots=["[gMASK]"]), stop_words=["<|user|>", "<|observation|>"], efficient_eos=True, ) register_template( name="granite3", format_user=StringFormatter( slots=[ "<|start_of_role|>user<|end_of_role|>{{content}}<|end_of_text|>\n<|start_of_role|>assistant<|end_of_role|>" ] ), format_assistant=StringFormatter(slots=["{{content}}<|end_of_text|>\n"]), format_system=StringFormatter(slots=["<|start_of_role|>system<|end_of_role|>{{content}}<|end_of_text|>\n"]), ) register_template( name="index", format_user=StringFormatter(slots=["reserved_0{{content}}reserved_1"]), format_system=StringFormatter(slots=["{{content}}"]), efficient_eos=True, ) register_template( name="intern", format_user=StringFormatter(slots=["<|User|>:{{content}}\n<|Bot|>:"]), format_assistant=StringFormatter(slots=["{{content}}\n"]), format_system=StringFormatter(slots=["<|System|>:{{content}}\n"]), format_prefix=EmptyFormatter(slots=[{"bos_token"}]), default_system=( "You are an AI assistant whose name is InternLM (书生·浦语).\n" "- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory " "(上海人工智能实验室). It is designed to be helpful, honest, and harmless.\n" "- InternLM (书生·浦语) can understand and communicate fluently in the language " "chosen by the user such as English and 中文." ), stop_words=[""], ) register_template( name="intern2", format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]), format_assistant=StringFormatter(slots=["{{content}}<|im_end|>\n"]), format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]), format_prefix=EmptyFormatter(slots=[{"bos_token"}]), default_system=( "You are an AI assistant whose name is InternLM (书生·浦语).\n" "- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory " "(上海人工智能实验室). It is designed to be helpful, honest, and harmless.\n" "- InternLM (书生·浦语) can understand and communicate fluently in the language " "chosen by the user such as English and 中文." ), stop_words=["<|im_end|>"], ) register_template( name="llama2", format_user=StringFormatter(slots=[{"bos_token"}, "[INST] {{content}} [/INST]"]), format_system=StringFormatter(slots=["<>\n{{content}}\n<>\n\n"]), template_class=Llama2Template, ) # copied from llama2 template register_template( name="llama2_zh", format_user=StringFormatter(slots=[{"bos_token"}, "[INST] {{content}} [/INST]"]), format_system=StringFormatter(slots=["<>\n{{content}}\n<>\n\n"]), default_system="You are a helpful assistant. 你是一个乐于助人的助手。", template_class=Llama2Template, ) register_template( name="llama3", format_user=StringFormatter( slots=[ ( "<|start_header_id|>user<|end_header_id|>\n\n{{content}}<|eot_id|>" "<|start_header_id|>assistant<|end_header_id|>\n\n" ) ] ), format_assistant=StringFormatter(slots=["{{content}}<|eot_id|>"]), format_system=StringFormatter(slots=["<|start_header_id|>system<|end_header_id|>\n\n{{content}}<|eot_id|>"]), format_function=FunctionFormatter(slots=["{{content}}<|eot_id|>"], tool_format="llama3"), format_observation=StringFormatter( slots=[ ( "<|start_header_id|>ipython<|end_header_id|>\n\n{{content}}<|eot_id|>" "<|start_header_id|>assistant<|end_header_id|>\n\n" ) ] ), format_tools=ToolFormatter(tool_format="llama3"), format_prefix=EmptyFormatter(slots=[{"bos_token"}]), stop_words=["<|eot_id|>", "<|eom_id|>"], ) # copied from llama3 template register_template( name="mllama", format_user=StringFormatter( slots=[ ( "<|start_header_id|>user<|end_header_id|>\n\n{{content}}<|eot_id|>" "<|start_header_id|>assistant<|end_header_id|>\n\n" ) ] ), format_assistant=StringFormatter(slots=["{{content}}<|eot_id|>"]), format_system=StringFormatter(slots=["<|start_header_id|>system<|end_header_id|>\n\n{{content}}<|eot_id|>"]), format_function=FunctionFormatter(slots=["{{content}}<|eot_id|>"], tool_format="llama3"), format_observation=StringFormatter( slots=[ ( "<|start_header_id|>ipython<|end_header_id|>\n\n{{content}}<|eot_id|>" "<|start_header_id|>assistant<|end_header_id|>\n\n" ) ] ), format_tools=ToolFormatter(tool_format="llama3"), format_prefix=EmptyFormatter(slots=[{"bos_token"}]), stop_words=["<|eot_id|>", "<|eom_id|>"], mm_plugin=get_mm_plugin(name="mllama", image_token="<|image|>"), ) register_template( name="moonlight", format_user=StringFormatter( slots=["<|im_user|>user<|im_middle|>{{content}}<|im_end|><|im_assistant|>assistant<|im_middle|>"] ), format_assistant=StringFormatter(slots=["{{content}}<|im_end|>"]), format_system=StringFormatter(slots=["<|im_system|>system<|im_middle|>{{content}}<|im_end|>"]), default_system="You are a helpful assistant provided by Moonshot-AI.", stop_words=["<|im_end|>"], ) # copied from vicuna template register_template( name="llava", format_user=StringFormatter(slots=["USER: {{content}} ASSISTANT:"]), default_system=( "A chat between a curious user and an artificial intelligence assistant. " "The assistant gives helpful, detailed, and polite answers to the user's questions." ), mm_plugin=get_mm_plugin(name="llava", image_token=""), ) # copied from vicuna template register_template( name="llava_next", format_user=StringFormatter(slots=["USER: {{content}} ASSISTANT:"]), default_system=( "A chat between a curious user and an artificial intelligence assistant. " "The assistant gives helpful, detailed, and polite answers to the user's questions." ), mm_plugin=get_mm_plugin(name="llava_next", image_token=""), ) # copied from llama3 template register_template( name="llava_next_llama3", format_user=StringFormatter( slots=[ ( "<|start_header_id|>user<|end_header_id|>\n\n{{content}}<|eot_id|>" "<|start_header_id|>assistant<|end_header_id|>\n\n" ) ] ), format_assistant=StringFormatter(slots=["{{content}}<|eot_id|>"]), format_system=StringFormatter(slots=["<|start_header_id|>system<|end_header_id|>\n\n{{content}}<|eot_id|>"]), format_function=FunctionFormatter(slots=["{{content}}<|eot_id|>"], tool_format="llama3"), format_observation=StringFormatter( slots=[ ( "<|start_header_id|>ipython<|end_header_id|>\n\n{{content}}<|eot_id|>" "<|start_header_id|>assistant<|end_header_id|>\n\n" ) ] ), format_tools=ToolFormatter(tool_format="llama3"), format_prefix=EmptyFormatter(slots=[{"bos_token"}]), stop_words=["<|eot_id|>", "<|eom_id|>"], mm_plugin=get_mm_plugin(name="llava_next", image_token=""), ) # copied from mistral template register_template( name="llava_next_mistral", format_user=StringFormatter(slots=["[INST] {{content}}[/INST]"]), format_assistant=StringFormatter(slots=[" {{content}}", {"eos_token"}]), format_system=StringFormatter(slots=["{{content}}\n\n"]), format_function=FunctionFormatter(slots=["[TOOL_CALLS] {{content}}", {"eos_token"}], tool_format="mistral"), format_observation=StringFormatter(slots=["""[TOOL_RESULTS] {"content": {{content}}}[/TOOL_RESULTS]"""]), format_tools=ToolFormatter(tool_format="mistral"), format_prefix=EmptyFormatter(slots=[{"bos_token"}]), mm_plugin=get_mm_plugin(name="llava_next", image_token=""), template_class=Llama2Template, ) # copied from qwen template register_template( name="llava_next_qwen", format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]), format_assistant=StringFormatter(slots=["{{content}}<|im_end|>\n"]), format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]), format_function=FunctionFormatter(slots=["{{content}}<|im_end|>\n"], tool_format="qwen"), format_observation=StringFormatter( slots=["<|im_start|>user\n\n{{content}}\n<|im_end|>\n<|im_start|>assistant\n"] ), format_tools=ToolFormatter(tool_format="qwen"), default_system="You are a helpful assistant.", stop_words=["<|im_end|>"], mm_plugin=get_mm_plugin(name="llava_next", image_token=""), ) # copied from chatml template register_template( name="llava_next_yi", format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]), format_assistant=StringFormatter(slots=["{{content}}<|im_end|>\n"]), format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]), stop_words=["<|im_end|>"], mm_plugin=get_mm_plugin(name="llava_next", image_token=""), ) # copied from vicuna template register_template( name="llava_next_video", format_user=StringFormatter(slots=["USER: {{content}} ASSISTANT:"]), default_system=( "A chat between a curious user and an artificial intelligence assistant. " "The assistant gives helpful, detailed, and polite answers to the user's questions." ), mm_plugin=get_mm_plugin(name="llava_next_video", image_token="", video_token="