|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
from typing import TYPE_CHECKING, Any, Dict, List, Sequence |
|
|
|
import pytest |
|
import torch |
|
from PIL import Image |
|
|
|
from llamafactory.data.mm_plugin import get_mm_plugin |
|
from llamafactory.hparams import get_infer_args |
|
from llamafactory.model import load_tokenizer |
|
|
|
|
|
if TYPE_CHECKING: |
|
from transformers import PreTrainedTokenizer, ProcessorMixin |
|
from transformers.image_processing_utils import BaseImageProcessor |
|
|
|
from llamafactory.data.mm_plugin import BasePlugin |
|
from llamafactory.model.loader import TokenizerModule |
|
|
|
|
|
HF_TOKEN = os.getenv("HF_TOKEN") |
|
|
|
TINY_LLAMA = os.getenv("TINY_LLAMA", "llamafactory/tiny-random-Llama-3") |
|
|
|
MM_MESSAGES = [ |
|
{"role": "user", "content": "<image>What is in this image?"}, |
|
{"role": "assistant", "content": "A cat."}, |
|
] |
|
|
|
TEXT_MESSAGES = [ |
|
{"role": "user", "content": "How are you"}, |
|
{"role": "assistant", "content": "I am fine!"}, |
|
] |
|
|
|
IMAGES = [Image.new("RGB", (32, 32), (255, 255, 255))] |
|
|
|
NO_IMAGES = [] |
|
|
|
NO_VIDEOS = [] |
|
|
|
NO_AUDIOS = [] |
|
|
|
IMGLENS = [1] |
|
|
|
NO_IMGLENS = [0] |
|
|
|
NO_VIDLENS = [0] |
|
|
|
NO_AUDLENS = [0] |
|
|
|
INPUT_IDS = [0, 1, 2, 3, 4] |
|
|
|
LABELS = [0, 1, 2, 3, 4] |
|
|
|
BATCH_IDS = [[1] * 1024] |
|
|
|
|
|
def _get_mm_inputs(processor: "ProcessorMixin") -> Dict[str, "torch.Tensor"]: |
|
image_processor: "BaseImageProcessor" = getattr(processor, "image_processor") |
|
return image_processor(images=IMAGES, return_tensors="pt") |
|
|
|
|
|
def _is_close(batch_a: Dict[str, Any], batch_b: Dict[str, Any]) -> None: |
|
assert batch_a.keys() == batch_b.keys() |
|
for key in batch_a.keys(): |
|
if isinstance(batch_a[key], torch.Tensor): |
|
assert torch.allclose(batch_a[key], batch_b[key], rtol=1e-4, atol=1e-5) |
|
elif isinstance(batch_a[key], list) and all(isinstance(item, torch.Tensor) for item in batch_a[key]): |
|
assert len(batch_a[key]) == len(batch_b[key]) |
|
for tensor_a, tensor_b in zip(batch_a[key], batch_b[key]): |
|
assert torch.allclose(tensor_a, tensor_b, rtol=1e-4, atol=1e-5) |
|
else: |
|
assert batch_a[key] == batch_b[key] |
|
|
|
|
|
def _load_tokenizer_module(model_name_or_path: str) -> "TokenizerModule": |
|
model_args, *_ = get_infer_args({"model_name_or_path": model_name_or_path, "template": "default"}) |
|
return load_tokenizer(model_args) |
|
|
|
|
|
def _check_plugin( |
|
plugin: "BasePlugin", |
|
tokenizer: "PreTrainedTokenizer", |
|
processor: "ProcessorMixin", |
|
expected_mm_messages: Sequence[Dict[str, str]] = MM_MESSAGES, |
|
expected_input_ids: List[int] = INPUT_IDS, |
|
expected_labels: List[int] = LABELS, |
|
expected_mm_inputs: Dict[str, Any] = {}, |
|
expected_no_mm_inputs: Dict[str, Any] = {}, |
|
) -> None: |
|
|
|
if plugin.__class__.__name__ != "BasePlugin": |
|
assert plugin.process_messages(MM_MESSAGES, IMAGES, NO_VIDEOS, NO_AUDIOS, processor) == expected_mm_messages |
|
assert plugin.process_token_ids(INPUT_IDS, LABELS, IMAGES, NO_VIDEOS, NO_AUDIOS, tokenizer, processor) == ( |
|
expected_input_ids, |
|
expected_labels, |
|
) |
|
_is_close( |
|
plugin.get_mm_inputs(IMAGES, NO_VIDEOS, NO_AUDIOS, IMGLENS, NO_VIDLENS, NO_AUDLENS, BATCH_IDS, processor), |
|
expected_mm_inputs, |
|
) |
|
|
|
|
|
assert plugin.process_messages(TEXT_MESSAGES, NO_IMAGES, NO_VIDEOS, NO_AUDIOS, processor) == TEXT_MESSAGES |
|
assert plugin.process_token_ids(INPUT_IDS, LABELS, NO_IMAGES, NO_VIDEOS, NO_AUDIOS, tokenizer, processor) == ( |
|
INPUT_IDS, |
|
LABELS, |
|
) |
|
_is_close( |
|
plugin.get_mm_inputs( |
|
NO_IMAGES, NO_VIDEOS, NO_AUDIOS, NO_IMGLENS, NO_VIDLENS, NO_AUDLENS, BATCH_IDS, processor |
|
), |
|
expected_no_mm_inputs, |
|
) |
|
|
|
|
|
def test_base_plugin(): |
|
tokenizer_module = _load_tokenizer_module(model_name_or_path=TINY_LLAMA) |
|
base_plugin = get_mm_plugin(name="base") |
|
check_inputs = {"plugin": base_plugin, **tokenizer_module} |
|
_check_plugin(**check_inputs) |
|
|
|
|
|
def test_llava_plugin(): |
|
image_seqlen = 576 |
|
tokenizer_module = _load_tokenizer_module(model_name_or_path="llava-hf/llava-1.5-7b-hf") |
|
llava_plugin = get_mm_plugin(name="llava", image_token="<image>") |
|
check_inputs = {"plugin": llava_plugin, **tokenizer_module} |
|
check_inputs["expected_mm_messages"] = [ |
|
{key: value.replace("<image>", "<image>" * image_seqlen) for key, value in message.items()} |
|
for message in MM_MESSAGES |
|
] |
|
check_inputs["expected_mm_inputs"] = _get_mm_inputs(tokenizer_module["processor"]) |
|
_check_plugin(**check_inputs) |
|
|
|
|
|
def test_llava_next_plugin(): |
|
image_seqlen = 1176 |
|
tokenizer_module = _load_tokenizer_module(model_name_or_path="llava-hf/llava-v1.6-vicuna-7b-hf") |
|
llava_next_plugin = get_mm_plugin(name="llava_next", image_token="<image>") |
|
check_inputs = {"plugin": llava_next_plugin, **tokenizer_module} |
|
check_inputs["expected_mm_messages"] = [ |
|
{key: value.replace("<image>", "<image>" * image_seqlen) for key, value in message.items()} |
|
for message in MM_MESSAGES |
|
] |
|
check_inputs["expected_mm_inputs"] = _get_mm_inputs(tokenizer_module["processor"]) |
|
_check_plugin(**check_inputs) |
|
|
|
|
|
def test_llava_next_video_plugin(): |
|
image_seqlen = 1176 |
|
tokenizer_module = _load_tokenizer_module(model_name_or_path="llava-hf/LLaVA-NeXT-Video-7B-hf") |
|
llava_next_video_plugin = get_mm_plugin(name="llava_next_video", image_token="<image>", video_token="<video>") |
|
check_inputs = {"plugin": llava_next_video_plugin, **tokenizer_module} |
|
check_inputs["expected_mm_messages"] = [ |
|
{key: value.replace("<image>", "<image>" * image_seqlen) for key, value in message.items()} |
|
for message in MM_MESSAGES |
|
] |
|
check_inputs["expected_mm_inputs"] = _get_mm_inputs(tokenizer_module["processor"]) |
|
_check_plugin(**check_inputs) |
|
|
|
|
|
@pytest.mark.skipif(not HF_TOKEN, reason="Gated model.") |
|
def test_paligemma_plugin(): |
|
image_seqlen = 256 |
|
tokenizer_module = _load_tokenizer_module(model_name_or_path="google/paligemma-3b-pt-224") |
|
paligemma_plugin = get_mm_plugin(name="paligemma", image_token="<image>") |
|
check_inputs = {"plugin": paligemma_plugin, **tokenizer_module} |
|
check_inputs["expected_mm_messages"] = [ |
|
{key: value.replace("<image>", "") for key, value in message.items()} for message in MM_MESSAGES |
|
] |
|
check_inputs["expected_input_ids"] = [ |
|
tokenizer_module["tokenizer"].convert_tokens_to_ids(paligemma_plugin.image_token) |
|
] * image_seqlen + INPUT_IDS |
|
check_inputs["expected_labels"] = [-100] * image_seqlen + LABELS |
|
check_inputs["expected_mm_inputs"] = _get_mm_inputs(tokenizer_module["processor"]) |
|
check_inputs["expected_mm_inputs"]["token_type_ids"] = [[0] * image_seqlen + [1] * (1024 - image_seqlen)] |
|
check_inputs["expected_no_mm_inputs"] = {"token_type_ids": [[1] * 1024]} |
|
_check_plugin(**check_inputs) |
|
|
|
|
|
def test_pixtral_plugin(): |
|
image_slice_height, image_slice_width = 2, 2 |
|
tokenizer_module = _load_tokenizer_module(model_name_or_path="mistral-community/pixtral-12b") |
|
pixtral_plugin = get_mm_plugin(name="pixtral", image_token="[IMG]") |
|
check_inputs = {"plugin": pixtral_plugin, **tokenizer_module} |
|
check_inputs["expected_mm_messages"] = [ |
|
{ |
|
key: value.replace( |
|
"<image>", |
|
("{}[IMG_BREAK]".format("[IMG]" * image_slice_width) * image_slice_height).rsplit("[IMG_BREAK]", 1)[0] |
|
+ "[IMG_END]", |
|
) |
|
for key, value in message.items() |
|
} |
|
for message in MM_MESSAGES |
|
] |
|
check_inputs["expected_mm_inputs"] = _get_mm_inputs(tokenizer_module["processor"]) |
|
check_inputs["expected_mm_inputs"].pop("image_sizes") |
|
check_inputs["expected_mm_inputs"]["pixel_values"] = check_inputs["expected_mm_inputs"]["pixel_values"][0] |
|
_check_plugin(**check_inputs) |
|
|
|
|
|
def test_qwen2_vl_plugin(): |
|
image_seqlen = 4 |
|
tokenizer_module = _load_tokenizer_module(model_name_or_path="Qwen/Qwen2-VL-7B-Instruct") |
|
qwen2_vl_plugin = get_mm_plugin(name="qwen2_vl", image_token="<|image_pad|>") |
|
check_inputs = {"plugin": qwen2_vl_plugin, **tokenizer_module} |
|
check_inputs["expected_mm_messages"] = [ |
|
{ |
|
key: value.replace("<image>", "<|vision_start|>{}<|vision_end|>".format("<|image_pad|>" * image_seqlen)) |
|
for key, value in message.items() |
|
} |
|
for message in MM_MESSAGES |
|
] |
|
check_inputs["expected_mm_inputs"] = _get_mm_inputs(tokenizer_module["processor"]) |
|
_check_plugin(**check_inputs) |
|
|
|
|
|
def test_video_llava_plugin(): |
|
image_seqlen = 256 |
|
tokenizer_module = _load_tokenizer_module(model_name_or_path="LanguageBind/Video-LLaVA-7B-hf") |
|
video_llava_plugin = get_mm_plugin(name="video_llava", image_token="<image>", video_token="<video>") |
|
check_inputs = {"plugin": video_llava_plugin, **tokenizer_module} |
|
check_inputs["expected_mm_messages"] = [ |
|
{key: value.replace("<image>", "<image>" * image_seqlen) for key, value in message.items()} |
|
for message in MM_MESSAGES |
|
] |
|
check_inputs["expected_mm_inputs"] = _get_mm_inputs(tokenizer_module["processor"]) |
|
_check_plugin(**check_inputs) |
|
|