|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import shutil |
|
from typing import TYPE_CHECKING, Any, Dict, List, Optional |
|
|
|
import torch |
|
import torch.distributed as dist |
|
from transformers import PreTrainedModel |
|
|
|
from ..data import get_template_and_fix_tokenizer |
|
from ..extras import logging |
|
from ..extras.constants import V_HEAD_SAFE_WEIGHTS_NAME, V_HEAD_WEIGHTS_NAME |
|
from ..extras.misc import infer_optim_dtype |
|
from ..extras.packages import is_ray_available |
|
from ..hparams import get_infer_args, get_ray_args, get_train_args, read_args |
|
from ..model import load_model, load_tokenizer |
|
from .callbacks import LogCallback, PissaConvertCallback, ReporterCallback |
|
from .dpo import run_dpo |
|
from .kto import run_kto |
|
from .ppo import run_ppo |
|
from .pt import run_pt |
|
from .rm import run_rm |
|
from .sft import run_sft |
|
from .trainer_utils import get_ray_trainer, get_swanlab_callback |
|
|
|
|
|
if is_ray_available(): |
|
from ray.train.huggingface.transformers import RayTrainReportCallback |
|
|
|
|
|
if TYPE_CHECKING: |
|
from transformers import TrainerCallback |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
def _training_function(config: Dict[str, Any]) -> None: |
|
args = config.get("args") |
|
callbacks: List[Any] = config.get("callbacks") |
|
model_args, data_args, training_args, finetuning_args, generating_args = get_train_args(args) |
|
|
|
callbacks.append(LogCallback()) |
|
if finetuning_args.pissa_convert: |
|
callbacks.append(PissaConvertCallback()) |
|
|
|
if finetuning_args.use_swanlab: |
|
callbacks.append(get_swanlab_callback(finetuning_args)) |
|
|
|
callbacks.append(ReporterCallback(model_args, data_args, finetuning_args, generating_args)) |
|
|
|
if finetuning_args.stage == "pt": |
|
run_pt(model_args, data_args, training_args, finetuning_args, callbacks) |
|
elif finetuning_args.stage == "sft": |
|
run_sft(model_args, data_args, training_args, finetuning_args, generating_args, callbacks) |
|
elif finetuning_args.stage == "rm": |
|
run_rm(model_args, data_args, training_args, finetuning_args, callbacks) |
|
elif finetuning_args.stage == "ppo": |
|
run_ppo(model_args, data_args, training_args, finetuning_args, generating_args, callbacks) |
|
elif finetuning_args.stage == "dpo": |
|
run_dpo(model_args, data_args, training_args, finetuning_args, callbacks) |
|
elif finetuning_args.stage == "kto": |
|
run_kto(model_args, data_args, training_args, finetuning_args, callbacks) |
|
else: |
|
raise ValueError(f"Unknown task: {finetuning_args.stage}.") |
|
|
|
try: |
|
if dist.is_initialized(): |
|
dist.destroy_process_group() |
|
except Exception as e: |
|
logger.warning(f"Failed to destroy process group: {e}.") |
|
|
|
|
|
def run_exp(args: Optional[Dict[str, Any]] = None, callbacks: Optional[List["TrainerCallback"]] = None) -> None: |
|
args = read_args(args) |
|
ray_args = get_ray_args(args) |
|
callbacks = callbacks or [] |
|
if ray_args.use_ray: |
|
callbacks.append(RayTrainReportCallback()) |
|
trainer = get_ray_trainer( |
|
training_function=_training_function, |
|
train_loop_config={"args": args, "callbacks": callbacks}, |
|
ray_args=ray_args, |
|
) |
|
trainer.fit() |
|
else: |
|
_training_function(config={"args": args, "callbacks": callbacks}) |
|
|
|
|
|
def export_model(args: Optional[Dict[str, Any]] = None) -> None: |
|
model_args, data_args, finetuning_args, _ = get_infer_args(args) |
|
|
|
if model_args.export_dir is None: |
|
raise ValueError("Please specify `export_dir` to save model.") |
|
|
|
if model_args.adapter_name_or_path is not None and model_args.export_quantization_bit is not None: |
|
raise ValueError("Please merge adapters before quantizing the model.") |
|
|
|
tokenizer_module = load_tokenizer(model_args) |
|
tokenizer = tokenizer_module["tokenizer"] |
|
processor = tokenizer_module["processor"] |
|
template = get_template_and_fix_tokenizer(tokenizer, data_args) |
|
model = load_model(tokenizer, model_args, finetuning_args) |
|
|
|
if getattr(model, "quantization_method", None) is not None and model_args.adapter_name_or_path is not None: |
|
raise ValueError("Cannot merge adapters to a quantized model.") |
|
|
|
if not isinstance(model, PreTrainedModel): |
|
raise ValueError("The model is not a `PreTrainedModel`, export aborted.") |
|
|
|
if getattr(model, "quantization_method", None) is not None: |
|
setattr(model.config, "torch_dtype", torch.float16) |
|
else: |
|
if model_args.infer_dtype == "auto": |
|
output_dtype = getattr(model.config, "torch_dtype", torch.float32) |
|
if output_dtype == torch.float32: |
|
output_dtype = infer_optim_dtype(torch.bfloat16) |
|
else: |
|
output_dtype = getattr(torch, model_args.infer_dtype) |
|
|
|
setattr(model.config, "torch_dtype", output_dtype) |
|
model = model.to(output_dtype) |
|
logger.info_rank0(f"Convert model dtype to: {output_dtype}.") |
|
|
|
model.save_pretrained( |
|
save_directory=model_args.export_dir, |
|
max_shard_size=f"{model_args.export_size}GB", |
|
safe_serialization=(not model_args.export_legacy_format), |
|
) |
|
if model_args.export_hub_model_id is not None: |
|
model.push_to_hub( |
|
model_args.export_hub_model_id, |
|
token=model_args.hf_hub_token, |
|
max_shard_size=f"{model_args.export_size}GB", |
|
safe_serialization=(not model_args.export_legacy_format), |
|
) |
|
|
|
if finetuning_args.stage == "rm": |
|
if model_args.adapter_name_or_path is not None: |
|
vhead_path = model_args.adapter_name_or_path[-1] |
|
else: |
|
vhead_path = model_args.model_name_or_path |
|
|
|
if os.path.exists(os.path.join(vhead_path, V_HEAD_SAFE_WEIGHTS_NAME)): |
|
shutil.copy( |
|
os.path.join(vhead_path, V_HEAD_SAFE_WEIGHTS_NAME), |
|
os.path.join(model_args.export_dir, V_HEAD_SAFE_WEIGHTS_NAME), |
|
) |
|
logger.info_rank0(f"Copied valuehead to {model_args.export_dir}.") |
|
elif os.path.exists(os.path.join(vhead_path, V_HEAD_WEIGHTS_NAME)): |
|
shutil.copy( |
|
os.path.join(vhead_path, V_HEAD_WEIGHTS_NAME), |
|
os.path.join(model_args.export_dir, V_HEAD_WEIGHTS_NAME), |
|
) |
|
logger.info_rank0(f"Copied valuehead to {model_args.export_dir}.") |
|
|
|
try: |
|
tokenizer.padding_side = "left" |
|
tokenizer.init_kwargs["padding_side"] = "left" |
|
tokenizer.save_pretrained(model_args.export_dir) |
|
if model_args.export_hub_model_id is not None: |
|
tokenizer.push_to_hub(model_args.export_hub_model_id, token=model_args.hf_hub_token) |
|
|
|
if processor is not None: |
|
processor.save_pretrained(model_args.export_dir) |
|
if model_args.export_hub_model_id is not None: |
|
processor.push_to_hub(model_args.export_hub_model_id, token=model_args.hf_hub_token) |
|
|
|
except Exception as e: |
|
logger.warning_rank0(f"Cannot save tokenizer, please copy the files manually: {e}.") |
|
|
|
with open(os.path.join(model_args.export_dir, "Modelfile"), "w", encoding="utf-8") as f: |
|
f.write(template.get_ollama_modelfile(tokenizer)) |
|
logger.info_rank0(f"Saved ollama modelfile to {model_args.export_dir}.") |
|
|