OsamaMo's picture
Training in progress, step 500
93adfea verified
# Copyright 2024 HuggingFace Inc. and the LlamaFactory team.
#
# This code is inspired by the HuggingFace's PEFT library.
# https://github.com/huggingface/peft/blob/v0.10.0/src/peft/peft_model.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import os
from typing import TYPE_CHECKING, Any, Dict, Literal, Sequence, Tuple, Union
import torch
import torch.distributed as dist
import transformers.dynamic_module_utils
from transformers import InfNanRemoveLogitsProcessor, LogitsProcessorList
from transformers.dynamic_module_utils import get_relative_imports
from transformers.utils import (
is_torch_bf16_gpu_available,
is_torch_cuda_available,
is_torch_mps_available,
is_torch_npu_available,
is_torch_xpu_available,
)
from transformers.utils.versions import require_version
from . import logging
from .packages import is_transformers_version_greater_than
_is_fp16_available = is_torch_npu_available() or is_torch_cuda_available()
try:
_is_bf16_available = is_torch_bf16_gpu_available() or (is_torch_npu_available() and torch.npu.is_bf16_supported())
except Exception:
_is_bf16_available = False
if TYPE_CHECKING:
from numpy.typing import NDArray
from ..hparams import ModelArguments
logger = logging.get_logger(__name__)
class AverageMeter:
r"""
Computes and stores the average and current value.
"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def check_version(requirement: str, mandatory: bool = False) -> None:
r"""
Optionally checks the package version.
"""
if is_env_enabled("DISABLE_VERSION_CHECK") and not mandatory:
logger.warning_rank0_once("Version checking has been disabled, may lead to unexpected behaviors.")
return
if mandatory:
hint = f"To fix: run `pip install {requirement}`."
else:
hint = f"To fix: run `pip install {requirement}` or set `DISABLE_VERSION_CHECK=1` to skip this check."
require_version(requirement, hint)
def check_dependencies() -> None:
r"""
Checks the version of the required packages.
"""
check_version("transformers>=4.41.2,<=4.49.0,!=4.46.0,!=4.46.1,!=4.46.2,!=4.46.3,!=4.47.0,!=4.47.1,!=4.48.0")
check_version("datasets>=2.16.0,<=3.2.0")
check_version("accelerate>=0.34.0,<=1.2.1")
check_version("peft>=0.11.1,<=0.12.0")
check_version("trl>=0.8.6,<=0.9.6")
if is_transformers_version_greater_than("4.46.0") and not is_transformers_version_greater_than("4.48.1"):
logger.warning_rank0_once("There are known bugs in transformers v4.46.0-v4.48.0, please use other versions.")
def calculate_tps(dataset: Sequence[Dict[str, Any]], metrics: Dict[str, float], stage: Literal["sft", "rm"]) -> float:
r"""
Calculates effective tokens per second.
"""
effective_token_num = 0
for data in dataset:
if stage == "sft":
effective_token_num += len(data["input_ids"])
elif stage == "rm":
effective_token_num += len(data["chosen_input_ids"]) + len(data["rejected_input_ids"])
result = effective_token_num * metrics["epoch"] / metrics["train_runtime"]
return result / dist.get_world_size() if dist.is_initialized() else result
def count_parameters(model: "torch.nn.Module") -> Tuple[int, int]:
r"""
Returns the number of trainable parameters and number of all parameters in the model.
"""
trainable_params, all_param = 0, 0
for param in model.parameters():
num_params = param.numel()
# if using DS Zero 3 and the weights are initialized empty
if num_params == 0 and hasattr(param, "ds_numel"):
num_params = param.ds_numel
# Due to the design of 4bit linear layers from bitsandbytes, multiply the number of parameters by itemsize
if param.__class__.__name__ == "Params4bit":
if hasattr(param, "quant_storage") and hasattr(param.quant_storage, "itemsize"):
num_bytes = param.quant_storage.itemsize
elif hasattr(param, "element_size"): # for older pytorch version
num_bytes = param.element_size()
else:
num_bytes = 1
num_params = num_params * 2 * num_bytes
all_param += num_params
if param.requires_grad:
trainable_params += num_params
return trainable_params, all_param
def get_current_device() -> "torch.device":
r"""
Gets the current available device.
"""
if is_torch_xpu_available():
device = "xpu:{}".format(os.environ.get("LOCAL_RANK", "0"))
elif is_torch_npu_available():
device = "npu:{}".format(os.environ.get("LOCAL_RANK", "0"))
elif is_torch_mps_available():
device = "mps:{}".format(os.environ.get("LOCAL_RANK", "0"))
elif is_torch_cuda_available():
device = "cuda:{}".format(os.environ.get("LOCAL_RANK", "0"))
else:
device = "cpu"
return torch.device(device)
def get_device_count() -> int:
r"""
Gets the number of available GPU or NPU devices.
"""
if is_torch_xpu_available():
return torch.xpu.device_count()
elif is_torch_npu_available():
return torch.npu.device_count()
elif is_torch_cuda_available():
return torch.cuda.device_count()
else:
return 0
def get_logits_processor() -> "LogitsProcessorList":
r"""
Gets logits processor that removes NaN and Inf logits.
"""
logits_processor = LogitsProcessorList()
logits_processor.append(InfNanRemoveLogitsProcessor())
return logits_processor
def get_peak_memory() -> Tuple[int, int]:
r"""
Gets the peak memory usage for the current device (in Bytes).
"""
if is_torch_npu_available():
return torch.npu.max_memory_allocated(), torch.npu.max_memory_reserved()
elif is_torch_cuda_available():
return torch.cuda.max_memory_allocated(), torch.cuda.max_memory_reserved()
else:
return 0, 0
def has_tokenized_data(path: "os.PathLike") -> bool:
r"""
Checks if the path has a tokenized dataset.
"""
return os.path.isdir(path) and len(os.listdir(path)) > 0
def infer_optim_dtype(model_dtype: "torch.dtype") -> "torch.dtype":
r"""
Infers the optimal dtype according to the model_dtype and device compatibility.
"""
if _is_bf16_available and model_dtype == torch.bfloat16:
return torch.bfloat16
elif _is_fp16_available:
return torch.float16
else:
return torch.float32
def is_gpu_or_npu_available() -> bool:
r"""
Checks if the GPU or NPU is available.
"""
return is_torch_npu_available() or is_torch_cuda_available()
def is_env_enabled(env_var: str, default: str = "0") -> bool:
r"""
Checks if the environment variable is enabled.
"""
return os.getenv(env_var, default).lower() in ["true", "y", "1"]
def numpify(inputs: Union["NDArray", "torch.Tensor"]) -> "NDArray":
r"""
Casts a torch tensor or a numpy array to a numpy array.
"""
if isinstance(inputs, torch.Tensor):
inputs = inputs.cpu()
if inputs.dtype == torch.bfloat16: # numpy does not support bfloat16 until 1.21.4
inputs = inputs.to(torch.float32)
inputs = inputs.numpy()
return inputs
def skip_check_imports() -> None:
r"""
Avoids flash attention import error in custom model files.
"""
if not is_env_enabled("FORCE_CHECK_IMPORTS"):
transformers.dynamic_module_utils.check_imports = get_relative_imports
def torch_gc() -> None:
r"""
Collects GPU or NPU memory.
"""
gc.collect()
if is_torch_xpu_available():
torch.xpu.empty_cache()
elif is_torch_npu_available():
torch.npu.empty_cache()
elif is_torch_mps_available():
torch.mps.empty_cache()
elif is_torch_cuda_available():
torch.cuda.empty_cache()
def try_download_model_from_other_hub(model_args: "ModelArguments") -> str:
if (not use_modelscope() and not use_openmind()) or os.path.exists(model_args.model_name_or_path):
return model_args.model_name_or_path
if use_modelscope():
check_version("modelscope>=1.11.0", mandatory=True)
from modelscope import snapshot_download # type: ignore
revision = "master" if model_args.model_revision == "main" else model_args.model_revision
return snapshot_download(
model_args.model_name_or_path,
revision=revision,
cache_dir=model_args.cache_dir,
)
if use_openmind():
check_version("openmind>=0.8.0", mandatory=True)
from openmind.utils.hub import snapshot_download # type: ignore
return snapshot_download(
model_args.model_name_or_path,
revision=model_args.model_revision,
cache_dir=model_args.cache_dir,
)
def use_modelscope() -> bool:
return is_env_enabled("USE_MODELSCOPE_HUB")
def use_openmind() -> bool:
return is_env_enabled("USE_OPENMIND_HUB")
def use_ray() -> bool:
return is_env_enabled("USE_RAY")