|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import os |
|
from typing import TYPE_CHECKING, Any, Dict, Literal, Sequence, Tuple, Union |
|
|
|
import torch |
|
import torch.distributed as dist |
|
import transformers.dynamic_module_utils |
|
from transformers import InfNanRemoveLogitsProcessor, LogitsProcessorList |
|
from transformers.dynamic_module_utils import get_relative_imports |
|
from transformers.utils import ( |
|
is_torch_bf16_gpu_available, |
|
is_torch_cuda_available, |
|
is_torch_mps_available, |
|
is_torch_npu_available, |
|
is_torch_xpu_available, |
|
) |
|
from transformers.utils.versions import require_version |
|
|
|
from . import logging |
|
from .packages import is_transformers_version_greater_than |
|
|
|
|
|
_is_fp16_available = is_torch_npu_available() or is_torch_cuda_available() |
|
try: |
|
_is_bf16_available = is_torch_bf16_gpu_available() or (is_torch_npu_available() and torch.npu.is_bf16_supported()) |
|
except Exception: |
|
_is_bf16_available = False |
|
|
|
|
|
if TYPE_CHECKING: |
|
from numpy.typing import NDArray |
|
|
|
from ..hparams import ModelArguments |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class AverageMeter: |
|
r""" |
|
Computes and stores the average and current value. |
|
""" |
|
|
|
def __init__(self): |
|
self.reset() |
|
|
|
def reset(self): |
|
self.val = 0 |
|
self.avg = 0 |
|
self.sum = 0 |
|
self.count = 0 |
|
|
|
def update(self, val, n=1): |
|
self.val = val |
|
self.sum += val * n |
|
self.count += n |
|
self.avg = self.sum / self.count |
|
|
|
|
|
def check_version(requirement: str, mandatory: bool = False) -> None: |
|
r""" |
|
Optionally checks the package version. |
|
""" |
|
if is_env_enabled("DISABLE_VERSION_CHECK") and not mandatory: |
|
logger.warning_rank0_once("Version checking has been disabled, may lead to unexpected behaviors.") |
|
return |
|
|
|
if mandatory: |
|
hint = f"To fix: run `pip install {requirement}`." |
|
else: |
|
hint = f"To fix: run `pip install {requirement}` or set `DISABLE_VERSION_CHECK=1` to skip this check." |
|
|
|
require_version(requirement, hint) |
|
|
|
|
|
def check_dependencies() -> None: |
|
r""" |
|
Checks the version of the required packages. |
|
""" |
|
check_version("transformers>=4.41.2,<=4.49.0,!=4.46.0,!=4.46.1,!=4.46.2,!=4.46.3,!=4.47.0,!=4.47.1,!=4.48.0") |
|
check_version("datasets>=2.16.0,<=3.2.0") |
|
check_version("accelerate>=0.34.0,<=1.2.1") |
|
check_version("peft>=0.11.1,<=0.12.0") |
|
check_version("trl>=0.8.6,<=0.9.6") |
|
if is_transformers_version_greater_than("4.46.0") and not is_transformers_version_greater_than("4.48.1"): |
|
logger.warning_rank0_once("There are known bugs in transformers v4.46.0-v4.48.0, please use other versions.") |
|
|
|
|
|
def calculate_tps(dataset: Sequence[Dict[str, Any]], metrics: Dict[str, float], stage: Literal["sft", "rm"]) -> float: |
|
r""" |
|
Calculates effective tokens per second. |
|
""" |
|
effective_token_num = 0 |
|
for data in dataset: |
|
if stage == "sft": |
|
effective_token_num += len(data["input_ids"]) |
|
elif stage == "rm": |
|
effective_token_num += len(data["chosen_input_ids"]) + len(data["rejected_input_ids"]) |
|
|
|
result = effective_token_num * metrics["epoch"] / metrics["train_runtime"] |
|
return result / dist.get_world_size() if dist.is_initialized() else result |
|
|
|
|
|
def count_parameters(model: "torch.nn.Module") -> Tuple[int, int]: |
|
r""" |
|
Returns the number of trainable parameters and number of all parameters in the model. |
|
""" |
|
trainable_params, all_param = 0, 0 |
|
for param in model.parameters(): |
|
num_params = param.numel() |
|
|
|
if num_params == 0 and hasattr(param, "ds_numel"): |
|
num_params = param.ds_numel |
|
|
|
|
|
if param.__class__.__name__ == "Params4bit": |
|
if hasattr(param, "quant_storage") and hasattr(param.quant_storage, "itemsize"): |
|
num_bytes = param.quant_storage.itemsize |
|
elif hasattr(param, "element_size"): |
|
num_bytes = param.element_size() |
|
else: |
|
num_bytes = 1 |
|
|
|
num_params = num_params * 2 * num_bytes |
|
|
|
all_param += num_params |
|
if param.requires_grad: |
|
trainable_params += num_params |
|
|
|
return trainable_params, all_param |
|
|
|
|
|
def get_current_device() -> "torch.device": |
|
r""" |
|
Gets the current available device. |
|
""" |
|
if is_torch_xpu_available(): |
|
device = "xpu:{}".format(os.environ.get("LOCAL_RANK", "0")) |
|
elif is_torch_npu_available(): |
|
device = "npu:{}".format(os.environ.get("LOCAL_RANK", "0")) |
|
elif is_torch_mps_available(): |
|
device = "mps:{}".format(os.environ.get("LOCAL_RANK", "0")) |
|
elif is_torch_cuda_available(): |
|
device = "cuda:{}".format(os.environ.get("LOCAL_RANK", "0")) |
|
else: |
|
device = "cpu" |
|
|
|
return torch.device(device) |
|
|
|
|
|
def get_device_count() -> int: |
|
r""" |
|
Gets the number of available GPU or NPU devices. |
|
""" |
|
if is_torch_xpu_available(): |
|
return torch.xpu.device_count() |
|
elif is_torch_npu_available(): |
|
return torch.npu.device_count() |
|
elif is_torch_cuda_available(): |
|
return torch.cuda.device_count() |
|
else: |
|
return 0 |
|
|
|
|
|
def get_logits_processor() -> "LogitsProcessorList": |
|
r""" |
|
Gets logits processor that removes NaN and Inf logits. |
|
""" |
|
logits_processor = LogitsProcessorList() |
|
logits_processor.append(InfNanRemoveLogitsProcessor()) |
|
return logits_processor |
|
|
|
|
|
def get_peak_memory() -> Tuple[int, int]: |
|
r""" |
|
Gets the peak memory usage for the current device (in Bytes). |
|
""" |
|
if is_torch_npu_available(): |
|
return torch.npu.max_memory_allocated(), torch.npu.max_memory_reserved() |
|
elif is_torch_cuda_available(): |
|
return torch.cuda.max_memory_allocated(), torch.cuda.max_memory_reserved() |
|
else: |
|
return 0, 0 |
|
|
|
|
|
def has_tokenized_data(path: "os.PathLike") -> bool: |
|
r""" |
|
Checks if the path has a tokenized dataset. |
|
""" |
|
return os.path.isdir(path) and len(os.listdir(path)) > 0 |
|
|
|
|
|
def infer_optim_dtype(model_dtype: "torch.dtype") -> "torch.dtype": |
|
r""" |
|
Infers the optimal dtype according to the model_dtype and device compatibility. |
|
""" |
|
if _is_bf16_available and model_dtype == torch.bfloat16: |
|
return torch.bfloat16 |
|
elif _is_fp16_available: |
|
return torch.float16 |
|
else: |
|
return torch.float32 |
|
|
|
|
|
def is_gpu_or_npu_available() -> bool: |
|
r""" |
|
Checks if the GPU or NPU is available. |
|
""" |
|
return is_torch_npu_available() or is_torch_cuda_available() |
|
|
|
|
|
def is_env_enabled(env_var: str, default: str = "0") -> bool: |
|
r""" |
|
Checks if the environment variable is enabled. |
|
""" |
|
return os.getenv(env_var, default).lower() in ["true", "y", "1"] |
|
|
|
|
|
def numpify(inputs: Union["NDArray", "torch.Tensor"]) -> "NDArray": |
|
r""" |
|
Casts a torch tensor or a numpy array to a numpy array. |
|
""" |
|
if isinstance(inputs, torch.Tensor): |
|
inputs = inputs.cpu() |
|
if inputs.dtype == torch.bfloat16: |
|
inputs = inputs.to(torch.float32) |
|
|
|
inputs = inputs.numpy() |
|
|
|
return inputs |
|
|
|
|
|
def skip_check_imports() -> None: |
|
r""" |
|
Avoids flash attention import error in custom model files. |
|
""" |
|
if not is_env_enabled("FORCE_CHECK_IMPORTS"): |
|
transformers.dynamic_module_utils.check_imports = get_relative_imports |
|
|
|
|
|
def torch_gc() -> None: |
|
r""" |
|
Collects GPU or NPU memory. |
|
""" |
|
gc.collect() |
|
if is_torch_xpu_available(): |
|
torch.xpu.empty_cache() |
|
elif is_torch_npu_available(): |
|
torch.npu.empty_cache() |
|
elif is_torch_mps_available(): |
|
torch.mps.empty_cache() |
|
elif is_torch_cuda_available(): |
|
torch.cuda.empty_cache() |
|
|
|
|
|
def try_download_model_from_other_hub(model_args: "ModelArguments") -> str: |
|
if (not use_modelscope() and not use_openmind()) or os.path.exists(model_args.model_name_or_path): |
|
return model_args.model_name_or_path |
|
|
|
if use_modelscope(): |
|
check_version("modelscope>=1.11.0", mandatory=True) |
|
from modelscope import snapshot_download |
|
|
|
revision = "master" if model_args.model_revision == "main" else model_args.model_revision |
|
return snapshot_download( |
|
model_args.model_name_or_path, |
|
revision=revision, |
|
cache_dir=model_args.cache_dir, |
|
) |
|
|
|
if use_openmind(): |
|
check_version("openmind>=0.8.0", mandatory=True) |
|
from openmind.utils.hub import snapshot_download |
|
|
|
return snapshot_download( |
|
model_args.model_name_or_path, |
|
revision=model_args.model_revision, |
|
cache_dir=model_args.cache_dir, |
|
) |
|
|
|
|
|
def use_modelscope() -> bool: |
|
return is_env_enabled("USE_MODELSCOPE_HUB") |
|
|
|
|
|
def use_openmind() -> bool: |
|
return is_env_enabled("USE_OPENMIND_HUB") |
|
|
|
|
|
def use_ray() -> bool: |
|
return is_env_enabled("USE_RAY") |
|
|