|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import json |
|
import os |
|
from collections import OrderedDict |
|
from typing import TYPE_CHECKING, Dict |
|
|
|
import fire |
|
import torch |
|
from huggingface_hub import split_torch_state_dict_into_shards |
|
from safetensors.torch import save_file |
|
from tqdm import tqdm |
|
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, PreTrainedModel |
|
from transformers.modeling_utils import SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, WEIGHTS_INDEX_NAME, WEIGHTS_NAME |
|
|
|
|
|
if TYPE_CHECKING: |
|
from transformers import PretrainedConfig |
|
|
|
|
|
def change_name(name: str, old_index: int, new_index: int) -> str: |
|
return name.replace(f".{old_index:d}.", f".{new_index:d}.") |
|
|
|
|
|
def block_expansion( |
|
model_name_or_path: str, |
|
output_dir: str, |
|
num_expand: int, |
|
shard_size: str = "5GB", |
|
save_safetensors: bool = True, |
|
): |
|
r""" |
|
Performs block expansion for LLaMA, Mistral, Qwen2 or Yi models. |
|
Usage: python llama_pro.py --model_name_or_path meta-llama/Llama-2-7b-hf --output_dir llama2_pro --num_expand 8 |
|
""" |
|
config: "PretrainedConfig" = AutoConfig.from_pretrained(model_name_or_path, trust_remote_code=True) |
|
num_layers = getattr(config, "num_hidden_layers") |
|
if num_layers % num_expand != 0: |
|
raise ValueError(f"`num_layers` {num_layers} should be divisible by `num_expand` {num_expand}.") |
|
|
|
setattr(config, "num_hidden_layers", num_layers + num_expand) |
|
config.save_pretrained(output_dir) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True) |
|
tokenizer.save_pretrained(output_dir) |
|
|
|
print(f"Expanding model of {num_layers} layers to {num_layers + num_expand} layers.") |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name_or_path, torch_dtype="auto", device_map="cpu", trust_remote_code=True, low_cpu_mem_usage=True |
|
) |
|
assert isinstance(model, PreTrainedModel) |
|
if save_safetensors and getattr(model.config, "tie_word_embeddings", False): |
|
del model.lm_head |
|
|
|
split = num_layers // num_expand |
|
layer_cnt = 0 |
|
state_dict = model.state_dict() |
|
output_state_dict: Dict[str, "torch.Tensor"] = OrderedDict() |
|
for i in range(num_layers): |
|
for key, value in state_dict.items(): |
|
if f".{i:d}." in key: |
|
output_state_dict[change_name(key, i, layer_cnt)] = value |
|
|
|
print(f"Add layer {layer_cnt} copied from layer {i}.") |
|
layer_cnt += 1 |
|
if (i + 1) % split == 0: |
|
for key, value in state_dict.items(): |
|
if f".{i:d}." in key: |
|
if "down_proj" in key or "o_proj" in key: |
|
output_state_dict[change_name(key, i, layer_cnt)] = torch.zeros_like(value) |
|
else: |
|
output_state_dict[change_name(key, i, layer_cnt)] = torch.clone(value) |
|
|
|
print(f"Add layer {layer_cnt} expanded from layer {i}.") |
|
layer_cnt += 1 |
|
|
|
for key, value in state_dict.items(): |
|
if key not in output_state_dict: |
|
output_state_dict[key] = value |
|
|
|
weights_name = SAFE_WEIGHTS_NAME if save_safetensors else WEIGHTS_NAME |
|
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors") |
|
state_dict_split = split_torch_state_dict_into_shards( |
|
output_state_dict, filename_pattern=filename_pattern, max_shard_size=shard_size |
|
) |
|
for shard_file, tensors in tqdm(state_dict_split.filename_to_tensors.items(), desc="Save weights"): |
|
shard = {tensor: output_state_dict[tensor].contiguous() for tensor in tensors} |
|
if save_safetensors: |
|
save_file(shard, os.path.join(output_dir, shard_file), metadata={"format": "pt"}) |
|
else: |
|
torch.save(shard, os.path.join(output_dir, shard_file)) |
|
|
|
if not state_dict_split.is_sharded: |
|
print(f"Model weights saved in {os.path.join(output_dir, weights_name)}.") |
|
else: |
|
index = { |
|
"metadata": state_dict_split.metadata, |
|
"weight_map": state_dict_split.tensor_to_filename, |
|
} |
|
index_name = SAFE_WEIGHTS_INDEX_NAME if save_safetensors else WEIGHTS_INDEX_NAME |
|
with open(os.path.join(output_dir, index_name), "w", encoding="utf-8") as f: |
|
json.dump(index, f, indent=2, sort_keys=True) |
|
|
|
print(f"Model weights saved in {output_dir}.") |
|
|
|
print("- Fine-tune this model with:") |
|
print(f"model_name_or_path: {output_dir}") |
|
print("finetuning_type: freeze") |
|
print(f"freeze_trainable_layers: {num_expand}") |
|
print("use_llama_pro: true") |
|
|
|
|
|
if __name__ == "__main__": |
|
fire.Fire(block_expansion) |
|
|