File size: 5,816 Bytes
93adfea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
# Copyright 2025 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
from typing import Optional
import fire
from transformers import Seq2SeqTrainingArguments
from llamafactory.data import get_dataset, get_template_and_fix_tokenizer
from llamafactory.extras.constants import IGNORE_INDEX
from llamafactory.extras.misc import check_version, get_device_count
from llamafactory.extras.packages import is_vllm_available
from llamafactory.hparams import get_infer_args
from llamafactory.model import load_tokenizer
if is_vllm_available():
from vllm import LLM, SamplingParams
from vllm.lora.request import LoRARequest
def vllm_infer(
model_name_or_path: str,
adapter_name_or_path: str = None,
dataset: str = "alpaca_en_demo",
dataset_dir: str = "data",
template: str = "default",
cutoff_len: int = 2048,
max_samples: int = None,
vllm_config: str = "{}",
save_name: str = "generated_predictions.jsonl",
temperature: float = 0.95,
top_p: float = 0.7,
top_k: int = 50,
max_new_tokens: int = 1024,
repetition_penalty: float = 1.0,
seed: Optional[int] = None,
pipeline_parallel_size: int = 1,
image_max_pixels: int = 768 * 768,
image_min_pixels: int = 32 * 32,
):
r"""
Performs batch generation using vLLM engine, which supports tensor parallelism.
Usage: python vllm_infer.py --model_name_or_path meta-llama/Llama-2-7b-hf --template llama --dataset alpaca_en_demo
"""
check_version("vllm>=0.4.3,<=0.7.2")
if pipeline_parallel_size > get_device_count():
raise ValueError("Pipeline parallel size should be smaller than the number of gpus.")
model_args, data_args, _, generating_args = get_infer_args(
dict(
model_name_or_path=model_name_or_path,
adapter_name_or_path=adapter_name_or_path,
dataset=dataset,
dataset_dir=dataset_dir,
template=template,
cutoff_len=cutoff_len,
max_samples=max_samples,
preprocessing_num_workers=16,
vllm_config=vllm_config,
temperature=temperature,
top_p=top_p,
top_k=top_k,
max_new_tokens=max_new_tokens,
repetition_penalty=repetition_penalty,
)
)
training_args = Seq2SeqTrainingArguments(output_dir="dummy_dir")
tokenizer_module = load_tokenizer(model_args)
tokenizer = tokenizer_module["tokenizer"]
template_obj = get_template_and_fix_tokenizer(tokenizer, data_args)
template_obj.mm_plugin.expand_mm_tokens = False # for vllm generate
dataset_module = get_dataset(template_obj, model_args, data_args, training_args, "ppo", **tokenizer_module)
inputs, prompts, labels = [], [], []
for sample in dataset_module["train_dataset"]:
if sample["images"]:
multi_modal_data = {
"image": template_obj.mm_plugin._regularize_images(
sample["images"], image_max_pixels=image_max_pixels, image_min_pixels=image_min_pixels
)
}
else:
multi_modal_data = None
inputs.append({"prompt_token_ids": sample["input_ids"], "multi_modal_data": multi_modal_data})
prompts.append(tokenizer.decode(sample["input_ids"], skip_special_tokens=False))
labels.append(
tokenizer.decode(list(filter(lambda x: x != IGNORE_INDEX, sample["labels"])), skip_special_tokens=False)
)
sampling_params = SamplingParams(
repetition_penalty=generating_args.repetition_penalty or 1.0, # repetition_penalty must > 0
temperature=generating_args.temperature,
top_p=generating_args.top_p or 1.0, # top_p must > 0
top_k=generating_args.top_k,
stop_token_ids=template_obj.get_stop_token_ids(tokenizer),
max_tokens=generating_args.max_new_tokens,
skip_special_tokens=False,
seed=seed,
)
if model_args.adapter_name_or_path is not None:
lora_request = LoRARequest("default", 1, model_args.adapter_name_or_path[0])
else:
lora_request = None
engine_args = {
"model": model_args.model_name_or_path,
"trust_remote_code": True,
"dtype": model_args.infer_dtype,
"tensor_parallel_size": (get_device_count() // pipeline_parallel_size) or 1,
"pipeline_parallel_size": pipeline_parallel_size,
"disable_log_stats": True,
"enable_lora": model_args.adapter_name_or_path is not None,
}
if template_obj.mm_plugin.__class__.__name__ != "BasePlugin":
engine_args["limit_mm_per_prompt"] = {"image": 4, "video": 2}
if isinstance(model_args.vllm_config, dict):
engine_args.update(model_args.vllm_config)
results = LLM(**engine_args).generate(inputs, sampling_params, lora_request=lora_request)
preds = [result.outputs[0].text for result in results]
with open(save_name, "w", encoding="utf-8") as f:
for text, pred, label in zip(prompts, preds, labels):
f.write(json.dumps({"prompt": text, "predict": pred, "label": label}, ensure_ascii=False) + "\n")
print("*" * 70)
print(f"{len(prompts)} generated results have been saved at {save_name}.")
print("*" * 70)
if __name__ == "__main__":
fire.Fire(vllm_infer)
|