File size: 5,054 Bytes
93adfea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
# Copyright 2025 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import torch
from PIL import Image
from llamafactory.data import get_template_and_fix_tokenizer
from llamafactory.data.collator import MultiModalDataCollatorForSeq2Seq, prepare_4d_attention_mask
from llamafactory.extras.constants import IGNORE_INDEX
from llamafactory.hparams import get_infer_args
from llamafactory.model import load_tokenizer
TINY_LLAMA = os.getenv("TINY_LLAMA", "llamafactory/tiny-random-Llama-3")
def test_base_collator():
model_args, data_args, *_ = get_infer_args({"model_name_or_path": TINY_LLAMA, "template": "default"})
tokenizer_module = load_tokenizer(model_args)
template = get_template_and_fix_tokenizer(tokenizer_module["tokenizer"], data_args)
data_collator = MultiModalDataCollatorForSeq2Seq(
template=template,
pad_to_multiple_of=8,
label_pad_token_id=IGNORE_INDEX,
**tokenizer_module,
)
p = tokenizer_module["tokenizer"].pad_token_id
q = IGNORE_INDEX
features = [
{
"input_ids": [0, 1, 2, 3, 4, 5],
"attention_mask": [1, 1, 1, 1, 1, 1],
"labels": [q, q, 2, 3, 4, 5],
},
{
"input_ids": [6, 7],
"attention_mask": [1, 1],
"labels": [q, 7],
},
]
batch_input = data_collator(features)
expected_input = {
"input_ids": [
[0, 1, 2, 3, 4, 5, p, p],
[6, 7, p, p, p, p, p, p],
],
"attention_mask": [
[1, 1, 1, 1, 1, 1, 0, 0],
[1, 1, 0, 0, 0, 0, 0, 0],
],
"labels": [
[q, q, 2, 3, 4, 5, q, q],
[q, 7, q, q, q, q, q, q],
],
}
for k in batch_input.keys():
assert batch_input[k].eq(torch.tensor(expected_input[k])).all()
def test_multimodal_collator():
model_args, data_args, *_ = get_infer_args(
{"model_name_or_path": "Qwen/Qwen2-VL-7B-Instruct", "template": "qwen2_vl"}
)
tokenizer_module = load_tokenizer(model_args)
template = get_template_and_fix_tokenizer(tokenizer_module["tokenizer"], data_args)
data_collator = MultiModalDataCollatorForSeq2Seq(
template=template,
pad_to_multiple_of=4,
label_pad_token_id=IGNORE_INDEX,
**tokenizer_module,
)
p = tokenizer_module["tokenizer"].pad_token_id
q = IGNORE_INDEX
s = tokenizer_module["tokenizer"].convert_tokens_to_ids("<|vision_start|>")
e = tokenizer_module["tokenizer"].convert_tokens_to_ids("<|vision_end|>")
m = tokenizer_module["tokenizer"].convert_tokens_to_ids("<|image_pad|>")
fake_image = Image.new("RGB", (64, 64), (255, 255, 255))
features = [
{
"input_ids": [0, 1, 2, 3],
"attention_mask": [1, 1, 1, 1],
"labels": [0, 1, 2, 3],
},
]
batch_input = data_collator(features)
expected_input = {
"input_ids": [
[0, 1, 2, 3, s, m, m, m, m, e, p, p],
],
"attention_mask": [
[1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0],
],
"labels": [
[0, 1, 2, 3, q, q, q, q, q, q, q, q],
],
**tokenizer_module["processor"].image_processor(fake_image),
}
for k in batch_input.keys():
assert batch_input[k].eq(torch.tensor(expected_input[k])).all()
def test_4d_attention_mask():
o = 0.0
x = torch.finfo(torch.float16).min
attention_mask_with_indices = torch.tensor(
[
[1, 1, 2, 2, 2, 0],
[1, 2, 2, 3, 3, 3],
]
)
attention_mask_computed = prepare_4d_attention_mask(attention_mask_with_indices, torch.float16)
attention_mask_expected = torch.tensor(
[
[
[
[o, x, x, x, x, x],
[o, o, x, x, x, x],
[x, x, o, x, x, x],
[x, x, o, o, x, x],
[x, x, o, o, o, x],
[x, x, x, x, x, x],
]
],
[
[
[o, x, x, x, x, x],
[x, o, x, x, x, x],
[x, o, o, x, x, x],
[x, x, x, o, x, x],
[x, x, x, o, o, x],
[x, x, x, o, o, o],
]
],
],
dtype=torch.float16,
)
assert list(attention_mask_computed.size()) == [2, 1, 6, 6]
assert torch.all(attention_mask_computed == attention_mask_expected)
|