File size: 5,054 Bytes
93adfea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
# Copyright 2025 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os

import torch
from PIL import Image

from llamafactory.data import get_template_and_fix_tokenizer
from llamafactory.data.collator import MultiModalDataCollatorForSeq2Seq, prepare_4d_attention_mask
from llamafactory.extras.constants import IGNORE_INDEX
from llamafactory.hparams import get_infer_args
from llamafactory.model import load_tokenizer


TINY_LLAMA = os.getenv("TINY_LLAMA", "llamafactory/tiny-random-Llama-3")


def test_base_collator():
    model_args, data_args, *_ = get_infer_args({"model_name_or_path": TINY_LLAMA, "template": "default"})
    tokenizer_module = load_tokenizer(model_args)
    template = get_template_and_fix_tokenizer(tokenizer_module["tokenizer"], data_args)
    data_collator = MultiModalDataCollatorForSeq2Seq(
        template=template,
        pad_to_multiple_of=8,
        label_pad_token_id=IGNORE_INDEX,
        **tokenizer_module,
    )
    p = tokenizer_module["tokenizer"].pad_token_id
    q = IGNORE_INDEX
    features = [
        {
            "input_ids": [0, 1, 2, 3, 4, 5],
            "attention_mask": [1, 1, 1, 1, 1, 1],
            "labels": [q, q, 2, 3, 4, 5],
        },
        {
            "input_ids": [6, 7],
            "attention_mask": [1, 1],
            "labels": [q, 7],
        },
    ]
    batch_input = data_collator(features)
    expected_input = {
        "input_ids": [
            [0, 1, 2, 3, 4, 5, p, p],
            [6, 7, p, p, p, p, p, p],
        ],
        "attention_mask": [
            [1, 1, 1, 1, 1, 1, 0, 0],
            [1, 1, 0, 0, 0, 0, 0, 0],
        ],
        "labels": [
            [q, q, 2, 3, 4, 5, q, q],
            [q, 7, q, q, q, q, q, q],
        ],
    }
    for k in batch_input.keys():
        assert batch_input[k].eq(torch.tensor(expected_input[k])).all()


def test_multimodal_collator():
    model_args, data_args, *_ = get_infer_args(
        {"model_name_or_path": "Qwen/Qwen2-VL-7B-Instruct", "template": "qwen2_vl"}
    )
    tokenizer_module = load_tokenizer(model_args)
    template = get_template_and_fix_tokenizer(tokenizer_module["tokenizer"], data_args)
    data_collator = MultiModalDataCollatorForSeq2Seq(
        template=template,
        pad_to_multiple_of=4,
        label_pad_token_id=IGNORE_INDEX,
        **tokenizer_module,
    )
    p = tokenizer_module["tokenizer"].pad_token_id
    q = IGNORE_INDEX
    s = tokenizer_module["tokenizer"].convert_tokens_to_ids("<|vision_start|>")
    e = tokenizer_module["tokenizer"].convert_tokens_to_ids("<|vision_end|>")
    m = tokenizer_module["tokenizer"].convert_tokens_to_ids("<|image_pad|>")
    fake_image = Image.new("RGB", (64, 64), (255, 255, 255))

    features = [
        {
            "input_ids": [0, 1, 2, 3],
            "attention_mask": [1, 1, 1, 1],
            "labels": [0, 1, 2, 3],
        },
    ]
    batch_input = data_collator(features)
    expected_input = {
        "input_ids": [
            [0, 1, 2, 3, s, m, m, m, m, e, p, p],
        ],
        "attention_mask": [
            [1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0],
        ],
        "labels": [
            [0, 1, 2, 3, q, q, q, q, q, q, q, q],
        ],
        **tokenizer_module["processor"].image_processor(fake_image),
    }
    for k in batch_input.keys():
        assert batch_input[k].eq(torch.tensor(expected_input[k])).all()


def test_4d_attention_mask():
    o = 0.0
    x = torch.finfo(torch.float16).min
    attention_mask_with_indices = torch.tensor(
        [
            [1, 1, 2, 2, 2, 0],
            [1, 2, 2, 3, 3, 3],
        ]
    )
    attention_mask_computed = prepare_4d_attention_mask(attention_mask_with_indices, torch.float16)
    attention_mask_expected = torch.tensor(
        [
            [
                [
                    [o, x, x, x, x, x],
                    [o, o, x, x, x, x],
                    [x, x, o, x, x, x],
                    [x, x, o, o, x, x],
                    [x, x, o, o, o, x],
                    [x, x, x, x, x, x],
                ]
            ],
            [
                [
                    [o, x, x, x, x, x],
                    [x, o, x, x, x, x],
                    [x, o, o, x, x, x],
                    [x, x, x, o, x, x],
                    [x, x, x, o, o, x],
                    [x, x, x, o, o, o],
                ]
            ],
        ],
        dtype=torch.float16,
    )
    assert list(attention_mask_computed.size()) == [2, 1, 6, 6]
    assert torch.all(attention_mask_computed == attention_mask_expected)