File size: 8,004 Bytes
93adfea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
# Copyright 2025 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import json
import os
from typing import TYPE_CHECKING, Any, Dict, Generator, List, Optional, Tuple

from transformers.utils import is_torch_npu_available

from ..chat import ChatModel
from ..data import Role
from ..extras.constants import PEFT_METHODS
from ..extras.misc import torch_gc
from ..extras.packages import is_gradio_available
from .common import get_save_dir, load_config
from .locales import ALERTS


if TYPE_CHECKING:
    from ..chat import BaseEngine
    from .manager import Manager


if is_gradio_available():
    import gradio as gr


def _format_response(text: str, lang: str, thought_words: Tuple[str, str] = ("<think>", "</think>")) -> str:
    r"""
    Post-processes the response text.

    Based on: https://huggingface.co/spaces/Lyte/DeepSeek-R1-Distill-Qwen-1.5B-Demo-GGUF/blob/main/app.py
    """
    if thought_words[0] not in text:
        return text

    text = text.replace(thought_words[0], "")
    result = text.split(thought_words[1], maxsplit=1)
    if len(result) == 1:
        summary = ALERTS["info_thinking"][lang]
        thought, answer = text, ""
    else:
        summary = ALERTS["info_thought"][lang]
        thought, answer = result

    return (
        f"<details open><summary class='thinking-summary'><span>{summary}</span></summary>\n\n"
        f"<div class='thinking-container'>\n{thought}\n</div>\n</details>{answer}"
    )


class WebChatModel(ChatModel):
    def __init__(self, manager: "Manager", demo_mode: bool = False, lazy_init: bool = True) -> None:
        self.manager = manager
        self.demo_mode = demo_mode
        self.engine: Optional["BaseEngine"] = None

        if not lazy_init:  # read arguments from command line
            super().__init__()

        if demo_mode and os.environ.get("DEMO_MODEL") and os.environ.get("DEMO_TEMPLATE"):  # load demo model
            model_name_or_path = os.environ.get("DEMO_MODEL")
            template = os.environ.get("DEMO_TEMPLATE")
            infer_backend = os.environ.get("DEMO_BACKEND", "huggingface")
            super().__init__(
                dict(model_name_or_path=model_name_or_path, template=template, infer_backend=infer_backend)
            )

    @property
    def loaded(self) -> bool:
        return self.engine is not None

    def load_model(self, data) -> Generator[str, None, None]:
        get = lambda elem_id: data[self.manager.get_elem_by_id(elem_id)]
        lang, model_name, model_path = get("top.lang"), get("top.model_name"), get("top.model_path")
        finetuning_type, checkpoint_path = get("top.finetuning_type"), get("top.checkpoint_path")
        user_config = load_config()

        error = ""
        if self.loaded:
            error = ALERTS["err_exists"][lang]
        elif not model_name:
            error = ALERTS["err_no_model"][lang]
        elif not model_path:
            error = ALERTS["err_no_path"][lang]
        elif self.demo_mode:
            error = ALERTS["err_demo"][lang]

        if error:
            gr.Warning(error)
            yield error
            return

        yield ALERTS["info_loading"][lang]
        args = dict(
            model_name_or_path=model_path,
            cache_dir=user_config.get("cache_dir", None),
            finetuning_type=finetuning_type,
            template=get("top.template"),
            rope_scaling=get("top.rope_scaling") if get("top.rope_scaling") != "none" else None,
            flash_attn="fa2" if get("top.booster") == "flashattn2" else "auto",
            use_unsloth=(get("top.booster") == "unsloth"),
            enable_liger_kernel=(get("top.booster") == "liger_kernel"),
            infer_backend=get("infer.infer_backend"),
            infer_dtype=get("infer.infer_dtype"),
            trust_remote_code=True,
        )

        # checkpoints
        if checkpoint_path:
            if finetuning_type in PEFT_METHODS:  # list
                args["adapter_name_or_path"] = ",".join(
                    [get_save_dir(model_name, finetuning_type, adapter) for adapter in checkpoint_path]
                )
            else:  # str
                args["model_name_or_path"] = get_save_dir(model_name, finetuning_type, checkpoint_path)

        # quantization
        if get("top.quantization_bit") != "none":
            args["quantization_bit"] = int(get("top.quantization_bit"))
            args["quantization_method"] = get("top.quantization_method")
            args["double_quantization"] = not is_torch_npu_available()

        super().__init__(args)
        yield ALERTS["info_loaded"][lang]

    def unload_model(self, data) -> Generator[str, None, None]:
        lang = data[self.manager.get_elem_by_id("top.lang")]

        if self.demo_mode:
            gr.Warning(ALERTS["err_demo"][lang])
            yield ALERTS["err_demo"][lang]
            return

        yield ALERTS["info_unloading"][lang]
        self.engine = None
        torch_gc()
        yield ALERTS["info_unloaded"][lang]

    @staticmethod
    def append(
        chatbot: List[Dict[str, str]],
        messages: List[Dict[str, str]],
        role: str,
        query: str,
    ) -> Tuple[List[Dict[str, str]], List[Dict[str, str]], str]:
        r"""
        Adds the user input to chatbot.

        Inputs: infer.chatbot, infer.messages, infer.role, infer.query
        Output: infer.chatbot, infer.messages
        """
        return chatbot + [{"role": "user", "content": query}], messages + [{"role": role, "content": query}], ""

    def stream(
        self,
        chatbot: List[Dict[str, str]],
        messages: List[Dict[str, str]],
        lang: str,
        system: str,
        tools: str,
        image: Optional[Any],
        video: Optional[Any],
        audio: Optional[Any],
        max_new_tokens: int,
        top_p: float,
        temperature: float,
    ) -> Generator[Tuple[List[Dict[str, str]], List[Dict[str, str]]], None, None]:
        r"""
        Generates output text in stream.

        Inputs: infer.chatbot, infer.messages, infer.system, infer.tools, infer.image, infer.video, ...
        Output: infer.chatbot, infer.messages
        """
        chatbot.append({"role": "assistant", "content": ""})
        response = ""
        for new_text in self.stream_chat(
            messages,
            system,
            tools,
            images=[image] if image else None,
            videos=[video] if video else None,
            audios=[audio] if audio else None,
            max_new_tokens=max_new_tokens,
            top_p=top_p,
            temperature=temperature,
        ):
            response += new_text
            if tools:
                result = self.engine.template.extract_tool(response)
            else:
                result = response

            if isinstance(result, list):
                tool_calls = [{"name": tool.name, "arguments": json.loads(tool.arguments)} for tool in result]
                tool_calls = json.dumps(tool_calls, ensure_ascii=False)
                output_messages = messages + [{"role": Role.FUNCTION.value, "content": tool_calls}]
                bot_text = "```json\n" + tool_calls + "\n```"
            else:
                output_messages = messages + [{"role": Role.ASSISTANT.value, "content": result}]
                bot_text = _format_response(result, lang, self.engine.template.thought_words)

            chatbot[-1] = {"role": "assistant", "content": bot_text}
            yield chatbot, output_messages