Speaker-wavLM-pro / spk_embeddings.py
ggmbr's picture
fix link to script
b50b5f4
'''
* Software Name : spk_embeddings.py
* SPDX-FileCopyrightText: Copyright (c) Orange SA
* SPDX-License-Identifier: CC-BY-SA-3.0
*
* This software is distributed under the Creative Commons Attribution Share Alike 3.0 Unported,
* see the "LICENSE.txt" file for more details or https://huggingface.co/Orange/Speaker-wavLM-pro/blob/main/LICENSE.txt
'''
import torch, torchaudio
import torch.nn as nn
from transformers.models.wavlm.modeling_wavlm import WavLMPreTrainedModel, WavLMModel
class TopLayers(nn.Module):
def __init__(self, embd_size = 250, top_interm_size = 512):
super(TopLayers, self).__init__()
self.affine1 = nn.Conv1d(in_channels=2048, out_channels=top_interm_size, kernel_size=1)
self.batchnorm1 = nn.BatchNorm1d(num_features=top_interm_size, affine=False, eps=1e-03)
self.affine2 = nn.Conv1d(in_channels=top_interm_size, out_channels=embd_size, kernel_size=1)
self.batchnorm2 = nn.BatchNorm1d(num_features=embd_size, affine=False, eps=1e-03)
self.activation = nn.ReLU(inplace=True)
def forward(self, x):
out = self.batchnorm1(self.activation(self.affine1(x)))
out = self.batchnorm2(self.activation(self.affine2(out)))
return nn.functional.normalize(out[:,:,0])
class EmbeddingsModel(WavLMPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.wavlm = WavLMModel(config)
self.top_layers = TopLayers(config.embd_size, config.top_interm_size)
def forward(self, input_values):
# MVN normalization
x_norm = (input_values - input_values.mean(dim=1).unsqueeze(1)) / (input_values.std(dim=1).unsqueeze(1))
# wavlm fwd
base_out = self.wavlm(input_values=x_norm, output_hidden_states=False).last_hidden_state
# stats pooling
v = base_out.var(dim=1).clamp(min=1e-10)
x_stats = torch.cat((base_out.mean(dim=1),v.pow(0.5)),dim=1).unsqueeze(dim=2)
# top layers fwd
return self.top_layers(x_stats)
def compute_embedding(fnm, model, max_size=320000):
sig, sr = torchaudio.load(fnm)
assert sr == 16000, "please convert your audio file to a sampling rate of 16 kHz"
sig = sig.mean(dim=0)
if sig.shape[0] > max_size:
print(f"truncating long signal {fnm}")
sig = sig[:max_size]
embd = model(sig.unsqueeze(dim=0))
return embd.clone().detach()