|
''' |
|
* Software Name : spk_embeddings.py |
|
* SPDX-FileCopyrightText: Copyright (c) Orange SA |
|
* SPDX-License-Identifier: CC-BY-SA-3.0 |
|
* |
|
* This software is distributed under the Creative Commons Attribution Share Alike 3.0 Unported, |
|
* see the "LICENSE.txt" file for more details or https://huggingface.co/Orange/Speaker-wavLM-pro/blob/main/LICENSE.txt |
|
''' |
|
|
|
import torch, torchaudio |
|
import torch.nn as nn |
|
from transformers.models.wavlm.modeling_wavlm import WavLMPreTrainedModel, WavLMModel |
|
|
|
class TopLayers(nn.Module): |
|
def __init__(self, embd_size = 250, top_interm_size = 512): |
|
super(TopLayers, self).__init__() |
|
self.affine1 = nn.Conv1d(in_channels=2048, out_channels=top_interm_size, kernel_size=1) |
|
self.batchnorm1 = nn.BatchNorm1d(num_features=top_interm_size, affine=False, eps=1e-03) |
|
self.affine2 = nn.Conv1d(in_channels=top_interm_size, out_channels=embd_size, kernel_size=1) |
|
self.batchnorm2 = nn.BatchNorm1d(num_features=embd_size, affine=False, eps=1e-03) |
|
self.activation = nn.ReLU(inplace=True) |
|
|
|
def forward(self, x): |
|
out = self.batchnorm1(self.activation(self.affine1(x))) |
|
out = self.batchnorm2(self.activation(self.affine2(out))) |
|
return nn.functional.normalize(out[:,:,0]) |
|
|
|
class EmbeddingsModel(WavLMPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.wavlm = WavLMModel(config) |
|
self.top_layers = TopLayers(config.embd_size, config.top_interm_size) |
|
|
|
def forward(self, input_values): |
|
|
|
x_norm = (input_values - input_values.mean(dim=1).unsqueeze(1)) / (input_values.std(dim=1).unsqueeze(1)) |
|
|
|
base_out = self.wavlm(input_values=x_norm, output_hidden_states=False).last_hidden_state |
|
|
|
v = base_out.var(dim=1).clamp(min=1e-10) |
|
x_stats = torch.cat((base_out.mean(dim=1),v.pow(0.5)),dim=1).unsqueeze(dim=2) |
|
|
|
return self.top_layers(x_stats) |
|
|
|
|
|
def compute_embedding(fnm, model, max_size=320000): |
|
sig, sr = torchaudio.load(fnm) |
|
assert sr == 16000, "please convert your audio file to a sampling rate of 16 kHz" |
|
sig = sig.mean(dim=0) |
|
if sig.shape[0] > max_size: |
|
print(f"truncating long signal {fnm}") |
|
sig = sig[:max_size] |
|
embd = model(sig.unsqueeze(dim=0)) |
|
return embd.clone().detach() |