File size: 5,906 Bytes
aa1be04 4affcfc bbef05c aa1be04 bbef05c 00bcf21 bbef05c 00bcf21 bbef05c 6456d11 00bcf21 bbef05c ac2d6fb 7afcc3b ac2d6fb 8dc32b4 ac2d6fb 7afcc3b ac2d6fb af9a5b8 45d906c ac2d6fb 8dc32b4 bbef05c 6b3caaa af9a5b8 6b3caaa 6456d11 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
---
license: cc-by-sa-3.0
tags:
- Speaker traits
- Voice
- Speaker
language:
- en
base_model:
- microsoft/wavlm-large
datasets:
- VCTK
- VoxCeleb
---
# Non-timbral Embeddings extractor
This model produces embeddings that represent the non-timbral traits (prosody, accent, ...) of a speaker's voice. These embeddings can be used the same way as for a classical
speaker verification (ASV): to compare two voice signals, extract an embeddings for each of them and compute the cosine similarity between the two embeddings.
The main difference with classical ASV embeddings is that here only the non-timbral traits are compared.
The model has been derived from the self-supervised pretrained model [WavLM-large](https://huggingface.co/microsoft/wavlm-large).
The next section explains how to compute these non-timbral embeddings.
# Usage
This first code snippet is for the model creation and download:
```
import torch
import torch.nn as nn
from transformers.models.wavlm.modeling_wavlm import WavLMPreTrainedModel, WavLMModel
class TopLayers(nn.Module):
def __init__(self, embd_size = 250, top_interm_size = 512):
super(TopLayers, self).__init__()
self.affine1 = nn.Conv1d(in_channels=2048, out_channels=top_interm_size, kernel_size=1)
self.batchnorm1 = nn.BatchNorm1d(num_features=top_interm_size, affine=False, eps=1e-03)
self.affine2 = nn.Conv1d(in_channels=top_interm_size, out_channels=embd_size, kernel_size=1)
self.batchnorm2 = nn.BatchNorm1d(num_features=embd_size, affine=False, eps=1e-03)
self.activation = nn.ReLU(inplace=True)
def forward(self, x):
out = self.batchnorm1(self.activation(self.affine1(x)))
out = self.batchnorm2(self.activation(self.affine2(out)))
return nn.functional.normalize(out[:,:,0])
class EmbeddingsModel(WavLMPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.wavlm = WavLMModel(config)
self.top_layers = TopLayers(config.embd_size, config.top_interm_size)
def forward(self, input_values):
# MVN normalization
x_norm = (input_values - input_values.mean(dim=1).unsqueeze(1)) / (input_values.std(dim=1).unsqueeze(1))
base_out = self.wavlm(input_values=x_norm, output_hidden_states=False).last_hidden_state
v = base_out.var(dim=1).clamp(min=1e-10)
x_stats = torch.cat((base_out.mean(dim=1),v.pow(0.5)),dim=1).unsqueeze(dim=2)
return self.top_layers(x_stats)
nt_extractor = EmbeddingsModel.from_pretrained("ggmbr/wnt")
nt_extractor.eval()
```
You may have noticed that the model produces normalized vectors as embeddings.
Next, we define a function that extracts the non-timbral embedding from an audio signal. In this tutorial version, the audio file is expected to be sampled at 16kHz.
Depending on the available memory (cpu or gpu), you may change the value of MAX_SIZE, which is used to truncate the long audio signals.
```
import torchaudio
MAX_SIZE = 320000 # max number of audio samples
def compute_embedding(fnm, model):
sig, sr = torchaudio.load(fnm)
assert sr == 16000, "please convert your audio file to a sampling rate of 16 kHz"
sig = sig.mean(dim=0).to(device)
if sig.shape[0] > MAX_SIZE:
print(f"truncating long signal {fnm}")
sig = sig[:MAX_SIZE]
embd = model(sig.unsqueeze(dim=0))
return embd.clone().detach()
```
And finally, we can compute two embeddings from two different files and compare them with a cosine similarity:
```
wav1 = "/data/AUDIO/speakerid/corpus/voxceleb1_2019/test/wav/id10270/x6uYqmx31kE/00001.wav"
wav2 = "/data/AUDIO/speakerid/corpus/voxceleb1_2019/test/wav/id10270/8jEAjG6SegY/00008.wav"
e1 = compute_embedding(wav1, nt_extractor)
e2 = compute_embedding(wav2, nt_extractor)
sim = float(torch.matmul(e1,e2.t()))
```
# Evaluations
Although it is not directly designed for this use case, evaluation on a standard ASV task can be performed with this model. Applied to
the [VoxCeleb1-clean test set](https://www.robots.ox.ac.uk/~vgg/data/voxceleb/meta/veri_test2.txt), it leads to an equal error rate (EER, lower denotes a better identification, random prediction leads to a value of 50%) of **10.681%**
(with a decision threshold of **0.467**). This value can be interpreted as the ability to identify speakers only with non-timbral cues. A discussion about this interpretation can be
found in the paper mentioned hereafter, as well as other experiments showing correlations between these embeddings and non-timbral voice attributes.
Please note that the EER value can vary a little depending on the MAX_SIZE defined to reduce long audios (max 30 seconds in our case).
# Limitations
The fine tuning data used to produce this model (VoxCeleb, VCTK) are mostly in english, which may affect the performance on other languages.
# Publication
Details about the method used to build this model have been published at Interspeech 2024 in the paper entitled
[Disentangling prosody and timbre embeddings via voice conversion](https://www.isca-archive.org/interspeech_2024/gengembre24_interspeech.pdf).
In this paper, the model has been refered to as W-PRO, and the *non-timbral embeddings* as *prosody embeddings*
(what we finally found a little bit confusing, hence the name modification).
### Citation
Gengembre, N., Le Blouch, O., Gendrot, C. (2024) Disentangling prosody and timbre embeddings via voice conversion. Proc. Interspeech 2024, 2765-2769, doi: 10.21437/Interspeech.2024-207
### BibteX citation
```
@inproceedings{gengembre24_interspeech,
title = {Disentangling prosody and timbre embeddings via voice conversion},
author = {Nicolas Gengembre and Olivier {Le Blouch} and Cédric Gendrot},
year = {2024},
booktitle = {Interspeech 2024},
pages = {2765--2769},
doi = {10.21437/Interspeech.2024-207},
issn = {2958-1796},
}
```
|