ggmbr commited on
Commit
9d08b26
·
1 Parent(s): 2078a43
Files changed (1) hide show
  1. README.md +3 -3
README.md CHANGED
@@ -46,13 +46,13 @@ e1 = compute_embedding(wav1, model)
46
  e2 = compute_embedding(wav2, model)
47
  sim = float(torch.matmul(e1,e2.t()))
48
 
49
- print(sim) #
50
  ```
51
 
52
  # Evaluations
53
  The model has been evaluated on the standard ASV [VoxCeleb1-clean test set](https://www.robots.ox.ac.uk/~vgg/data/voxceleb/meta/veri_test2.txt).
54
- It results in an Equal Error Rate (EER, lower value denotes a better identification, random prediction leads to a value of 50%) of **0.98%**
55
- (with a decision threshold of **0.37**).
56
 
57
  Please note that the EER value can vary a little depending on the max_size defined to reduce long audios (max 30 seconds in our case).
58
 
 
46
  e2 = compute_embedding(wav2, model)
47
  sim = float(torch.matmul(e1,e2.t()))
48
 
49
+ print(sim) #0.7334115505218506
50
  ```
51
 
52
  # Evaluations
53
  The model has been evaluated on the standard ASV [VoxCeleb1-clean test set](https://www.robots.ox.ac.uk/~vgg/data/voxceleb/meta/veri_test2.txt).
54
+ It results in an Equal Error Rate (EER, lower value denotes a better identification, random prediction leads to a value of 50%) of **0.946%**
55
+ (with a decision threshold of **0.388**).
56
 
57
  Please note that the EER value can vary a little depending on the max_size defined to reduce long audios (max 30 seconds in our case).
58