amokrov commited on
Commit
487b0e0
·
verified ·
1 Parent(s): 4915e15

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -3
README.md CHANGED
@@ -49,6 +49,7 @@ pip install optimum[openvino]
49
  2. Run model inference:
50
 
51
  ```
 
52
  from transformers import AutoProcessor
53
  from optimum.intel.openvino import OVModelForSpeechSeq2Seq
54
 
@@ -59,14 +60,14 @@ model = OVModelForSpeechSeq2Seq.from_pretrained(model_id)
59
  dataset = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation", trust_remote_code=True)
60
  sample = dataset[0]
61
 
62
- input_features = processor(
63
  sample["audio"]["array"],
64
  sampling_rate=sample["audio"]["sampling_rate"],
65
  return_tensors="pt",
66
  ).input_features
67
 
68
  outputs = model.generate(input_features)
69
- text = processor.batch_decode(outputs)[0]
70
  print(text)
71
  ```
72
 
@@ -100,7 +101,7 @@ device = "CPU"
100
  pipe = ov_genai.WhisperPipeline(model_path, device)
101
 
102
  dataset = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation", trust_remote_code=True)
103
- sample = dataset[0]["audio]["array"]
104
  print(pipe.generate(sample))
105
  ```
106
 
 
49
  2. Run model inference:
50
 
51
  ```
52
+ from datasets import load_dataset
53
  from transformers import AutoProcessor
54
  from optimum.intel.openvino import OVModelForSpeechSeq2Seq
55
 
 
60
  dataset = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation", trust_remote_code=True)
61
  sample = dataset[0]
62
 
63
+ input_features = tokenizer(
64
  sample["audio"]["array"],
65
  sampling_rate=sample["audio"]["sampling_rate"],
66
  return_tensors="pt",
67
  ).input_features
68
 
69
  outputs = model.generate(input_features)
70
+ text = tokenizer.batch_decode(outputs)[0]
71
  print(text)
72
  ```
73
 
 
101
  pipe = ov_genai.WhisperPipeline(model_path, device)
102
 
103
  dataset = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation", trust_remote_code=True)
104
+ sample = dataset[0]["audio"]["array"]
105
  print(pipe.generate(sample))
106
  ```
107