Upload folder using huggingface_hub
Browse files- README.md +7 -39
- config.json +3 -1
- configuration_phi3.py +227 -213
- generation_config.json +1 -1
- openvino_config.json +25 -0
- openvino_detokenizer.bin +2 -2
- openvino_detokenizer.xml +214 -20
- openvino_model.bin +2 -2
- openvino_model.xml +0 -0
- openvino_tokenizer.bin +2 -2
- openvino_tokenizer.xml +500 -150
- tokenizer.json +0 -0
README.md
CHANGED
|
@@ -14,8 +14,8 @@ This is [Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-
|
|
| 14 |
Weight compression was performed using `nncf.compress_weights` with the following parameters:
|
| 15 |
|
| 16 |
* mode: **int4_asym**
|
| 17 |
-
*
|
| 18 |
-
*
|
| 19 |
|
| 20 |
For more information on quantization, check the [OpenVINO model optimization guide](https://docs.openvino.ai/2024/openvino-workflow/model-optimization-guide/weight-compression.html).
|
| 21 |
|
|
@@ -24,11 +24,10 @@ For more information on quantization, check the [OpenVINO model optimization gui
|
|
| 24 |
|
| 25 |
The provided OpenVINO™ IR model is compatible with:
|
| 26 |
|
| 27 |
-
* OpenVINO version 2024.
|
| 28 |
-
* Optimum Intel 1.
|
| 29 |
-
|
| 30 |
-
## Running Model Inference with [Optimum Intel](https://huggingface.co/docs/optimum/intel/index)
|
| 31 |
|
|
|
|
| 32 |
|
| 33 |
1. Install packages required for using [Optimum Intel](https://huggingface.co/docs/optimum/intel/index) integration with the OpenVINO backend:
|
| 34 |
|
|
@@ -55,40 +54,9 @@ print(text)
|
|
| 55 |
|
| 56 |
For more examples and possible optimizations, refer to the [OpenVINO Large Language Model Inference Guide](https://docs.openvino.ai/2024/learn-openvino/llm_inference_guide.html).
|
| 57 |
|
| 58 |
-
## Running Model Inference with [OpenVINO GenAI](https://github.com/openvinotoolkit/openvino.genai)
|
| 59 |
-
|
| 60 |
-
1. Install packages required for using OpenVINO GenAI.
|
| 61 |
-
```
|
| 62 |
-
pip install openvino-genai huggingface_hub
|
| 63 |
-
```
|
| 64 |
-
|
| 65 |
-
2. Download model from HuggingFace Hub
|
| 66 |
-
|
| 67 |
-
```
|
| 68 |
-
import huggingface_hub as hf_hub
|
| 69 |
-
|
| 70 |
-
model_id = "OpenVINO/Phi-3-mini-4k-instruct-int4-ov"
|
| 71 |
-
model_path = "Phi-3-mini-4k-instruct-int4-ov"
|
| 72 |
-
|
| 73 |
-
hf_hub.snapshot_download(model_id, local_dir=model_path)
|
| 74 |
-
|
| 75 |
-
```
|
| 76 |
-
|
| 77 |
-
3. Run model inference:
|
| 78 |
-
|
| 79 |
-
```
|
| 80 |
-
import openvino_genai as ov_genai
|
| 81 |
-
|
| 82 |
-
device = "CPU"
|
| 83 |
-
pipe = ov_genai.LLMPipeline(model_path, device)
|
| 84 |
-
print(pipe.generate("What is OpenVINO?", max_length=200))
|
| 85 |
-
```
|
| 86 |
-
|
| 87 |
-
More GenAI usage examples can be found in OpenVINO GenAI library [docs](https://github.com/openvinotoolkit/openvino.genai/blob/master/src/README.md) and [samples](https://github.com/openvinotoolkit/openvino.genai?tab=readme-ov-file#openvino-genai-samples)
|
| 88 |
-
|
| 89 |
## Limitations
|
| 90 |
|
| 91 |
-
Check the original model card for [
|
| 92 |
|
| 93 |
## Legal information
|
| 94 |
|
|
@@ -96,4 +64,4 @@ The original model is distributed under [mit](https://choosealicense.com/license
|
|
| 96 |
|
| 97 |
## Disclaimer
|
| 98 |
|
| 99 |
-
Intel is committed to respecting human rights and avoiding causing or contributing to adverse impacts on human rights. See [Intel’s Global Human Rights Principles](https://www.intel.com/content/dam/www/central-libraries/us/en/documents/policy-human-rights.pdf). Intel’s products and software are intended only to be used in applications that do not cause or contribute to adverse impacts on human rights.
|
|
|
|
| 14 |
Weight compression was performed using `nncf.compress_weights` with the following parameters:
|
| 15 |
|
| 16 |
* mode: **int4_asym**
|
| 17 |
+
* ratio: **1**
|
| 18 |
+
* group_size: **64**
|
| 19 |
|
| 20 |
For more information on quantization, check the [OpenVINO model optimization guide](https://docs.openvino.ai/2024/openvino-workflow/model-optimization-guide/weight-compression.html).
|
| 21 |
|
|
|
|
| 24 |
|
| 25 |
The provided OpenVINO™ IR model is compatible with:
|
| 26 |
|
| 27 |
+
* OpenVINO version 2024.4.0 and higher
|
| 28 |
+
* Optimum Intel 1.23.1 and higher
|
|
|
|
|
|
|
| 29 |
|
| 30 |
+
## Running Model Inference
|
| 31 |
|
| 32 |
1. Install packages required for using [Optimum Intel](https://huggingface.co/docs/optimum/intel/index) integration with the OpenVINO backend:
|
| 33 |
|
|
|
|
| 54 |
|
| 55 |
For more examples and possible optimizations, refer to the [OpenVINO Large Language Model Inference Guide](https://docs.openvino.ai/2024/learn-openvino/llm_inference_guide.html).
|
| 56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
## Limitations
|
| 58 |
|
| 59 |
+
Check the original model card for [original model card](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) for limitations.
|
| 60 |
|
| 61 |
## Legal information
|
| 62 |
|
|
|
|
| 64 |
|
| 65 |
## Disclaimer
|
| 66 |
|
| 67 |
+
Intel is committed to respecting human rights and avoiding causing or contributing to adverse impacts on human rights. See [Intel’s Global Human Rights Principles](https://www.intel.com/content/dam/www/central-libraries/us/en/documents/policy-human-rights.pdf). Intel’s products and software are intended only to be used in applications that do not cause or contribute to adverse impacts on human rights.
|
config.json
CHANGED
|
@@ -3,6 +3,7 @@
|
|
| 3 |
"architectures": [
|
| 4 |
"Phi3ForCausalLM"
|
| 5 |
],
|
|
|
|
| 6 |
"attention_dropout": 0.0,
|
| 7 |
"auto_map": {
|
| 8 |
"AutoConfig": "configuration_phi3.Phi3Config",
|
|
@@ -28,7 +29,8 @@
|
|
| 28 |
"rope_theta": 10000.0,
|
| 29 |
"sliding_window": 2047,
|
| 30 |
"tie_word_embeddings": false,
|
| 31 |
-
"
|
|
|
|
| 32 |
"use_cache": true,
|
| 33 |
"vocab_size": 32064
|
| 34 |
}
|
|
|
|
| 3 |
"architectures": [
|
| 4 |
"Phi3ForCausalLM"
|
| 5 |
],
|
| 6 |
+
"attention_bias": false,
|
| 7 |
"attention_dropout": 0.0,
|
| 8 |
"auto_map": {
|
| 9 |
"AutoConfig": "configuration_phi3.Phi3Config",
|
|
|
|
| 29 |
"rope_theta": 10000.0,
|
| 30 |
"sliding_window": 2047,
|
| 31 |
"tie_word_embeddings": false,
|
| 32 |
+
"torch_dtype": "bfloat16",
|
| 33 |
+
"transformers_version": "4.45.2",
|
| 34 |
"use_cache": true,
|
| 35 |
"vocab_size": 32064
|
| 36 |
}
|
configuration_phi3.py
CHANGED
|
@@ -1,213 +1,227 @@
|
|
| 1 |
-
# coding=utf-8
|
| 2 |
-
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
|
| 3 |
-
#
|
| 4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
-
# you may not use this file except in compliance with the License.
|
| 6 |
-
# You may obtain a copy of the License at
|
| 7 |
-
#
|
| 8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
-
#
|
| 10 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
-
# See the License for the specific language governing permissions and
|
| 14 |
-
# limitations under the License.
|
| 15 |
-
|
| 16 |
-
""" Phi-3 model configuration"""
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
from transformers.configuration_utils import PretrainedConfig
|
| 20 |
-
from transformers.utils import logging
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
logger = logging.get_logger(__name__)
|
| 24 |
-
|
| 25 |
-
PHI3_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
| 26 |
-
"microsoft/Phi-3-mini-4k-instruct": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/resolve/main/config.json",
|
| 27 |
-
"microsoft/Phi-3-mini-128k-instruct": "https://huggingface.co/microsoft/Phi-3-mini-128k-instruct/resolve/main/config.json",
|
| 28 |
-
}
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
class Phi3Config(PretrainedConfig):
|
| 32 |
-
r"""
|
| 33 |
-
This is the configuration class to store the configuration of a [`Phi3Model`]. It is used to instantiate a Phi-3
|
| 34 |
-
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
| 35 |
-
defaults will yield a similar configuration to that of the
|
| 36 |
-
[microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct).
|
| 37 |
-
|
| 38 |
-
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 39 |
-
documentation from [`PretrainedConfig`] for more information.
|
| 40 |
-
|
| 41 |
-
Args:
|
| 42 |
-
vocab_size (`int`, *optional*, defaults to 32064):
|
| 43 |
-
Vocabulary size of the Phi-3 model. Defines the number of different tokens that can be represented by the
|
| 44 |
-
`inputs_ids` passed when calling [`Phi3Model`].
|
| 45 |
-
hidden_size (`int`, *optional*, defaults to 3072):
|
| 46 |
-
Dimension of the hidden representations.
|
| 47 |
-
intermediate_size (`int`, *optional*, defaults to 8192):
|
| 48 |
-
Dimension of the MLP representations.
|
| 49 |
-
num_hidden_layers (`int`, *optional*, defaults to 32):
|
| 50 |
-
Number of hidden layers in the Transformer decoder.
|
| 51 |
-
num_attention_heads (`int`, *optional*, defaults to 32):
|
| 52 |
-
Number of attention heads for each attention layer in the Transformer decoder.
|
| 53 |
-
num_key_value_heads (`int`, *optional*):
|
| 54 |
-
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
| 55 |
-
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
| 56 |
-
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
| 57 |
-
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
| 58 |
-
by meanpooling all the original heads within that group. For more details checkout [this
|
| 59 |
-
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
| 60 |
-
`num_attention_heads`.
|
| 61 |
-
resid_pdrop (`float`, *optional*, defaults to 0.0):
|
| 62 |
-
Dropout probability for mlp outputs.
|
| 63 |
-
embd_pdrop (`int`, *optional*, defaults to 0.0):
|
| 64 |
-
The dropout ratio for the embeddings.
|
| 65 |
-
attention_dropout (`float`, *optional*, defaults to 0.0):
|
| 66 |
-
The dropout ratio after computing the attention scores.
|
| 67 |
-
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
| 68 |
-
The non-linear activation function (function or string) in the decoder.
|
| 69 |
-
max_position_embeddings (`int`, *optional*, defaults to 4096):
|
| 70 |
-
The maximum sequence length that this model might ever be used with.
|
| 71 |
-
original_max_position_embeddings (`int`, *optional*, defaults to 4096):
|
| 72 |
-
The maximum sequence length that this model was trained with. This is used to determine the size of the
|
| 73 |
-
original RoPE embeddings when using long scaling.
|
| 74 |
-
initializer_range (`float`, *optional*, defaults to 0.02):
|
| 75 |
-
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
| 76 |
-
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
|
| 77 |
-
The epsilon value used for the RMSNorm.
|
| 78 |
-
use_cache (`bool`, *optional*, defaults to `True`):
|
| 79 |
-
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
| 80 |
-
relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not.
|
| 81 |
-
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
| 82 |
-
Whether to tie weight embeddings
|
| 83 |
-
rope_theta (`float`, *optional*, defaults to 10000.0):
|
| 84 |
-
The base period of the RoPE embeddings.
|
| 85 |
-
rope_scaling (`dict`, *optional*):
|
| 86 |
-
The scaling strategy for the RoPE embeddings. If `None`, no scaling is applied. If a dictionary, it must
|
| 87 |
-
contain the following keys: `type`, `short_factor` and `long_factor`. The `type` must be
|
| 88 |
-
the `short_factor` and `long_factor` must be lists of numbers with the same length as the hidden size
|
| 89 |
-
divided by the number of attention heads divided by 2.
|
| 90 |
-
bos_token_id (`int`, *optional*, defaults to 1):
|
| 91 |
-
The id of the "beginning-of-sequence" token.
|
| 92 |
-
eos_token_id (`int`, *optional*, defaults to 32000):
|
| 93 |
-
The id of the "end-of-sequence" token.
|
| 94 |
-
pad_token_id (`int`, *optional*, defaults to 32000):
|
| 95 |
-
The id of the padding token.
|
| 96 |
-
sliding_window (`int`, *optional*):
|
| 97 |
-
Sliding window attention window size. If `None`, no sliding window is applied.
|
| 98 |
-
|
| 99 |
-
Example:
|
| 100 |
-
|
| 101 |
-
```python
|
| 102 |
-
>>> from transformers import Phi3Model, Phi3Config
|
| 103 |
-
|
| 104 |
-
>>> # Initializing a Phi-3 style configuration
|
| 105 |
-
>>> configuration = Phi3Config.from_pretrained("microsoft/Phi-3-mini-4k-instruct")
|
| 106 |
-
|
| 107 |
-
>>> # Initializing a model from the configuration
|
| 108 |
-
>>> model = Phi3Model(configuration)
|
| 109 |
-
|
| 110 |
-
>>> # Accessing the model configuration
|
| 111 |
-
>>> configuration = model.config
|
| 112 |
-
```"""
|
| 113 |
-
|
| 114 |
-
model_type = "phi3"
|
| 115 |
-
keys_to_ignore_at_inference = ["past_key_values"]
|
| 116 |
-
|
| 117 |
-
def __init__(
|
| 118 |
-
self,
|
| 119 |
-
vocab_size=32064,
|
| 120 |
-
hidden_size=3072,
|
| 121 |
-
intermediate_size=8192,
|
| 122 |
-
num_hidden_layers=32,
|
| 123 |
-
num_attention_heads=32,
|
| 124 |
-
num_key_value_heads=None,
|
| 125 |
-
resid_pdrop=0.0,
|
| 126 |
-
embd_pdrop=0.0,
|
| 127 |
-
attention_dropout=0.0,
|
| 128 |
-
hidden_act="silu",
|
| 129 |
-
max_position_embeddings=4096,
|
| 130 |
-
original_max_position_embeddings=4096,
|
| 131 |
-
initializer_range=0.02,
|
| 132 |
-
rms_norm_eps=1e-5,
|
| 133 |
-
use_cache=True,
|
| 134 |
-
tie_word_embeddings=False,
|
| 135 |
-
rope_theta=10000.0,
|
| 136 |
-
rope_scaling=None,
|
| 137 |
-
bos_token_id=1,
|
| 138 |
-
eos_token_id=32000,
|
| 139 |
-
pad_token_id=32000,
|
| 140 |
-
sliding_window=None,
|
| 141 |
-
**kwargs,
|
| 142 |
-
):
|
| 143 |
-
self.vocab_size = vocab_size
|
| 144 |
-
self.hidden_size = hidden_size
|
| 145 |
-
self.intermediate_size = intermediate_size
|
| 146 |
-
self.num_hidden_layers = num_hidden_layers
|
| 147 |
-
self.num_attention_heads = num_attention_heads
|
| 148 |
-
|
| 149 |
-
if num_key_value_heads is None:
|
| 150 |
-
num_key_value_heads = num_attention_heads
|
| 151 |
-
|
| 152 |
-
self.num_key_value_heads = num_key_value_heads
|
| 153 |
-
self.resid_pdrop = resid_pdrop
|
| 154 |
-
self.embd_pdrop = embd_pdrop
|
| 155 |
-
self.attention_dropout = attention_dropout
|
| 156 |
-
self.hidden_act = hidden_act
|
| 157 |
-
self.max_position_embeddings = max_position_embeddings
|
| 158 |
-
self.original_max_position_embeddings = original_max_position_embeddings
|
| 159 |
-
self.initializer_range = initializer_range
|
| 160 |
-
self.rms_norm_eps = rms_norm_eps
|
| 161 |
-
self.use_cache = use_cache
|
| 162 |
-
self.rope_theta = rope_theta
|
| 163 |
-
self.rope_scaling = rope_scaling
|
| 164 |
-
self.
|
| 165 |
-
self.
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
|
| 16 |
+
""" Phi-3 model configuration"""
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 20 |
+
from transformers.utils import logging
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
logger = logging.get_logger(__name__)
|
| 24 |
+
|
| 25 |
+
PHI3_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
| 26 |
+
"microsoft/Phi-3-mini-4k-instruct": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/resolve/main/config.json",
|
| 27 |
+
"microsoft/Phi-3-mini-128k-instruct": "https://huggingface.co/microsoft/Phi-3-mini-128k-instruct/resolve/main/config.json",
|
| 28 |
+
}
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
class Phi3Config(PretrainedConfig):
|
| 32 |
+
r"""
|
| 33 |
+
This is the configuration class to store the configuration of a [`Phi3Model`]. It is used to instantiate a Phi-3
|
| 34 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
| 35 |
+
defaults will yield a similar configuration to that of the
|
| 36 |
+
[microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct).
|
| 37 |
+
|
| 38 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 39 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 40 |
+
|
| 41 |
+
Args:
|
| 42 |
+
vocab_size (`int`, *optional*, defaults to 32064):
|
| 43 |
+
Vocabulary size of the Phi-3 model. Defines the number of different tokens that can be represented by the
|
| 44 |
+
`inputs_ids` passed when calling [`Phi3Model`].
|
| 45 |
+
hidden_size (`int`, *optional*, defaults to 3072):
|
| 46 |
+
Dimension of the hidden representations.
|
| 47 |
+
intermediate_size (`int`, *optional*, defaults to 8192):
|
| 48 |
+
Dimension of the MLP representations.
|
| 49 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
| 50 |
+
Number of hidden layers in the Transformer decoder.
|
| 51 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
| 52 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
| 53 |
+
num_key_value_heads (`int`, *optional*):
|
| 54 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
| 55 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
| 56 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
| 57 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
| 58 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
| 59 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
| 60 |
+
`num_attention_heads`.
|
| 61 |
+
resid_pdrop (`float`, *optional*, defaults to 0.0):
|
| 62 |
+
Dropout probability for mlp outputs.
|
| 63 |
+
embd_pdrop (`int`, *optional*, defaults to 0.0):
|
| 64 |
+
The dropout ratio for the embeddings.
|
| 65 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
| 66 |
+
The dropout ratio after computing the attention scores.
|
| 67 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
| 68 |
+
The non-linear activation function (function or string) in the decoder.
|
| 69 |
+
max_position_embeddings (`int`, *optional*, defaults to 4096):
|
| 70 |
+
The maximum sequence length that this model might ever be used with.
|
| 71 |
+
original_max_position_embeddings (`int`, *optional*, defaults to 4096):
|
| 72 |
+
The maximum sequence length that this model was trained with. This is used to determine the size of the
|
| 73 |
+
original RoPE embeddings when using long scaling.
|
| 74 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
| 75 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
| 76 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
|
| 77 |
+
The epsilon value used for the RMSNorm.
|
| 78 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
| 79 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
| 80 |
+
relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not.
|
| 81 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
| 82 |
+
Whether to tie weight embeddings
|
| 83 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
| 84 |
+
The base period of the RoPE embeddings.
|
| 85 |
+
rope_scaling (`dict`, *optional*):
|
| 86 |
+
The scaling strategy for the RoPE embeddings. If `None`, no scaling is applied. If a dictionary, it must
|
| 87 |
+
contain the following keys: `type`, `short_factor` and `long_factor`. The `type` must be `longrope` and
|
| 88 |
+
the `short_factor` and `long_factor` must be lists of numbers with the same length as the hidden size
|
| 89 |
+
divided by the number of attention heads divided by 2.
|
| 90 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
| 91 |
+
The id of the "beginning-of-sequence" token.
|
| 92 |
+
eos_token_id (`int`, *optional*, defaults to 32000):
|
| 93 |
+
The id of the "end-of-sequence" token.
|
| 94 |
+
pad_token_id (`int`, *optional*, defaults to 32000):
|
| 95 |
+
The id of the padding token.
|
| 96 |
+
sliding_window (`int`, *optional*):
|
| 97 |
+
Sliding window attention window size. If `None`, no sliding window is applied.
|
| 98 |
+
|
| 99 |
+
Example:
|
| 100 |
+
|
| 101 |
+
```python
|
| 102 |
+
>>> from transformers import Phi3Model, Phi3Config
|
| 103 |
+
|
| 104 |
+
>>> # Initializing a Phi-3 style configuration
|
| 105 |
+
>>> configuration = Phi3Config.from_pretrained("microsoft/Phi-3-mini-4k-instruct")
|
| 106 |
+
|
| 107 |
+
>>> # Initializing a model from the configuration
|
| 108 |
+
>>> model = Phi3Model(configuration)
|
| 109 |
+
|
| 110 |
+
>>> # Accessing the model configuration
|
| 111 |
+
>>> configuration = model.config
|
| 112 |
+
```"""
|
| 113 |
+
|
| 114 |
+
model_type = "phi3"
|
| 115 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
| 116 |
+
|
| 117 |
+
def __init__(
|
| 118 |
+
self,
|
| 119 |
+
vocab_size=32064,
|
| 120 |
+
hidden_size=3072,
|
| 121 |
+
intermediate_size=8192,
|
| 122 |
+
num_hidden_layers=32,
|
| 123 |
+
num_attention_heads=32,
|
| 124 |
+
num_key_value_heads=None,
|
| 125 |
+
resid_pdrop=0.0,
|
| 126 |
+
embd_pdrop=0.0,
|
| 127 |
+
attention_dropout=0.0,
|
| 128 |
+
hidden_act="silu",
|
| 129 |
+
max_position_embeddings=4096,
|
| 130 |
+
original_max_position_embeddings=4096,
|
| 131 |
+
initializer_range=0.02,
|
| 132 |
+
rms_norm_eps=1e-5,
|
| 133 |
+
use_cache=True,
|
| 134 |
+
tie_word_embeddings=False,
|
| 135 |
+
rope_theta=10000.0,
|
| 136 |
+
rope_scaling=None,
|
| 137 |
+
bos_token_id=1,
|
| 138 |
+
eos_token_id=32000,
|
| 139 |
+
pad_token_id=32000,
|
| 140 |
+
sliding_window=None,
|
| 141 |
+
**kwargs,
|
| 142 |
+
):
|
| 143 |
+
self.vocab_size = vocab_size
|
| 144 |
+
self.hidden_size = hidden_size
|
| 145 |
+
self.intermediate_size = intermediate_size
|
| 146 |
+
self.num_hidden_layers = num_hidden_layers
|
| 147 |
+
self.num_attention_heads = num_attention_heads
|
| 148 |
+
|
| 149 |
+
if num_key_value_heads is None:
|
| 150 |
+
num_key_value_heads = num_attention_heads
|
| 151 |
+
|
| 152 |
+
self.num_key_value_heads = num_key_value_heads
|
| 153 |
+
self.resid_pdrop = resid_pdrop
|
| 154 |
+
self.embd_pdrop = embd_pdrop
|
| 155 |
+
self.attention_dropout = attention_dropout
|
| 156 |
+
self.hidden_act = hidden_act
|
| 157 |
+
self.max_position_embeddings = max_position_embeddings
|
| 158 |
+
self.original_max_position_embeddings = original_max_position_embeddings
|
| 159 |
+
self.initializer_range = initializer_range
|
| 160 |
+
self.rms_norm_eps = rms_norm_eps
|
| 161 |
+
self.use_cache = use_cache
|
| 162 |
+
self.rope_theta = rope_theta
|
| 163 |
+
self.rope_scaling = rope_scaling
|
| 164 |
+
self._rope_scaling_adjustment()
|
| 165 |
+
self._rope_scaling_validation()
|
| 166 |
+
self.sliding_window = sliding_window
|
| 167 |
+
|
| 168 |
+
super().__init__(
|
| 169 |
+
bos_token_id=bos_token_id,
|
| 170 |
+
eos_token_id=eos_token_id,
|
| 171 |
+
pad_token_id=pad_token_id,
|
| 172 |
+
tie_word_embeddings=tie_word_embeddings,
|
| 173 |
+
**kwargs,
|
| 174 |
+
)
|
| 175 |
+
|
| 176 |
+
def _rope_scaling_adjustment(self):
|
| 177 |
+
"""
|
| 178 |
+
Adjust the `type` of the `rope_scaling` configuration for backward compatibility.
|
| 179 |
+
"""
|
| 180 |
+
if self.rope_scaling is None:
|
| 181 |
+
return
|
| 182 |
+
|
| 183 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
| 184 |
+
|
| 185 |
+
# For backward compatibility if previous version used "su" or "yarn"
|
| 186 |
+
if rope_scaling_type is not None and rope_scaling_type in ["su", "yarn"]:
|
| 187 |
+
self.rope_scaling["type"] = "longrope"
|
| 188 |
+
|
| 189 |
+
def _rope_scaling_validation(self):
|
| 190 |
+
"""
|
| 191 |
+
Validate the `rope_scaling` configuration.
|
| 192 |
+
"""
|
| 193 |
+
if self.rope_scaling is None:
|
| 194 |
+
return
|
| 195 |
+
|
| 196 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 3:
|
| 197 |
+
raise ValueError(
|
| 198 |
+
"`rope_scaling` must be a dictionary with three fields, `type`, `short_factor` and `long_factor`, "
|
| 199 |
+
f"got {self.rope_scaling}"
|
| 200 |
+
)
|
| 201 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
| 202 |
+
rope_scaling_short_factor = self.rope_scaling.get("short_factor", None)
|
| 203 |
+
rope_scaling_long_factor = self.rope_scaling.get("long_factor", None)
|
| 204 |
+
if rope_scaling_type is None or rope_scaling_type not in ["longrope"]:
|
| 205 |
+
raise ValueError(f"`rope_scaling`'s type field must be one of ['longrope'], got {rope_scaling_type}")
|
| 206 |
+
if not (
|
| 207 |
+
isinstance(rope_scaling_short_factor, list)
|
| 208 |
+
and all(isinstance(x, (int, float)) for x in rope_scaling_short_factor)
|
| 209 |
+
):
|
| 210 |
+
raise ValueError(
|
| 211 |
+
f"`rope_scaling`'s short_factor field must be a list of numbers, got {rope_scaling_short_factor}"
|
| 212 |
+
)
|
| 213 |
+
if not len(rope_scaling_short_factor) == self.hidden_size // self.num_attention_heads // 2:
|
| 214 |
+
raise ValueError(
|
| 215 |
+
f"`rope_scaling`'s short_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_short_factor)}"
|
| 216 |
+
)
|
| 217 |
+
if not (
|
| 218 |
+
isinstance(rope_scaling_long_factor, list)
|
| 219 |
+
and all(isinstance(x, (int, float)) for x in rope_scaling_long_factor)
|
| 220 |
+
):
|
| 221 |
+
raise ValueError(
|
| 222 |
+
f"`rope_scaling`'s long_factor field must be a list of numbers, got {rope_scaling_long_factor}"
|
| 223 |
+
)
|
| 224 |
+
if not len(rope_scaling_long_factor) == self.hidden_size // self.num_attention_heads // 2:
|
| 225 |
+
raise ValueError(
|
| 226 |
+
f"`rope_scaling`'s long_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_long_factor)}"
|
| 227 |
+
)
|
generation_config.json
CHANGED
|
@@ -7,5 +7,5 @@
|
|
| 7 |
32007
|
| 8 |
],
|
| 9 |
"pad_token_id": 32000,
|
| 10 |
-
"transformers_version": "4.
|
| 11 |
}
|
|
|
|
| 7 |
32007
|
| 8 |
],
|
| 9 |
"pad_token_id": 32000,
|
| 10 |
+
"transformers_version": "4.45.2"
|
| 11 |
}
|
openvino_config.json
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"compression": null,
|
| 3 |
+
"dtype": "int4",
|
| 4 |
+
"input_info": null,
|
| 5 |
+
"optimum_version": "1.23.1",
|
| 6 |
+
"quantization_config": {
|
| 7 |
+
"all_layers": null,
|
| 8 |
+
"bits": 4,
|
| 9 |
+
"dataset": "wikitext2",
|
| 10 |
+
"gptq": null,
|
| 11 |
+
"group_size": 64,
|
| 12 |
+
"ignored_scope": null,
|
| 13 |
+
"num_samples": null,
|
| 14 |
+
"quant_method": "default",
|
| 15 |
+
"ratio": 1.0,
|
| 16 |
+
"scale_estimation": true,
|
| 17 |
+
"sensitivity_metric": null,
|
| 18 |
+
"sym": false,
|
| 19 |
+
"tokenizer": null,
|
| 20 |
+
"trust_remote_code": true,
|
| 21 |
+
"weight_format": "int4"
|
| 22 |
+
},
|
| 23 |
+
"save_onnx_model": false,
|
| 24 |
+
"transformers_version": "4.45.2"
|
| 25 |
+
}
|
openvino_detokenizer.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:abf0a5ac7698c27f1f3a8573b76a628e4a6a2c7eaddc7dd549ee3607a34d4061
|
| 3 |
+
size 339125
|
openvino_detokenizer.xml
CHANGED
|
@@ -1,61 +1,235 @@
|
|
| 1 |
<?xml version="1.0"?>
|
| 2 |
<net name="detokenizer" version="11">
|
| 3 |
<layers>
|
| 4 |
-
<layer id="0" name="
|
| 5 |
<data shape="?,?" element_type="i64" />
|
| 6 |
<output>
|
| 7 |
-
<port id="0" precision="I64" names="
|
| 8 |
<dim>-1</dim>
|
| 9 |
<dim>-1</dim>
|
| 10 |
</port>
|
| 11 |
</output>
|
| 12 |
</layer>
|
| 13 |
-
<layer id="1" name="
|
| 14 |
-
<data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
<output>
|
| 16 |
<port id="0" precision="U8">
|
| 17 |
-
<dim>
|
| 18 |
</port>
|
| 19 |
</output>
|
| 20 |
</layer>
|
| 21 |
-
<layer id="
|
| 22 |
-
<data
|
| 23 |
<input>
|
| 24 |
-
<port id="0" precision="
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
<dim>-1</dim>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
<dim>-1</dim>
|
| 27 |
</port>
|
| 28 |
</input>
|
| 29 |
<output>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
<port id="1" precision="I32">
|
| 31 |
<dim>-1</dim>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
<dim>-1</dim>
|
| 33 |
</port>
|
| 34 |
</output>
|
| 35 |
</layer>
|
| 36 |
-
<layer id="
|
| 37 |
<input>
|
| 38 |
-
<port id="0" precision="
|
| 39 |
-
<dim
|
| 40 |
</port>
|
| 41 |
<port id="1" precision="I32">
|
| 42 |
<dim>-1</dim>
|
|
|
|
|
|
|
| 43 |
<dim>-1</dim>
|
| 44 |
</port>
|
| 45 |
</input>
|
| 46 |
<output>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
<port id="2" precision="I32">
|
| 48 |
<dim>-1</dim>
|
| 49 |
</port>
|
| 50 |
<port id="3" precision="I32">
|
| 51 |
<dim>-1</dim>
|
| 52 |
</port>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
<port id="4" precision="U8">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
<dim>-1</dim>
|
| 55 |
</port>
|
| 56 |
</output>
|
| 57 |
</layer>
|
| 58 |
-
<layer id="
|
| 59 |
<data mode="begins_ends" />
|
| 60 |
<input>
|
| 61 |
<port id="0" precision="I32">
|
|
@@ -74,7 +248,7 @@
|
|
| 74 |
</port>
|
| 75 |
</output>
|
| 76 |
</layer>
|
| 77 |
-
<layer id="
|
| 78 |
<input>
|
| 79 |
<port id="0" precision="STRING">
|
| 80 |
<dim>-1</dim>
|
|
@@ -83,13 +257,33 @@
|
|
| 83 |
</layer>
|
| 84 |
</layers>
|
| 85 |
<edges>
|
| 86 |
-
<edge from-layer="0" from-port="0" to-layer="
|
| 87 |
-
<edge from-layer="1" from-port="
|
| 88 |
-
<edge from-layer="2" from-port="
|
| 89 |
-
<edge from-layer="3" from-port="
|
| 90 |
-
<edge from-layer="3" from-port="
|
| 91 |
-
<edge from-layer="3" from-port="
|
| 92 |
-
<edge from-layer="4" from-port="
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
</edges>
|
| 94 |
<rt_info>
|
| 95 |
<bos_token_id value="1" />
|
|
|
|
| 1 |
<?xml version="1.0"?>
|
| 2 |
<net name="detokenizer" version="11">
|
| 3 |
<layers>
|
| 4 |
+
<layer id="0" name="Parameter_282016" type="Parameter" version="opset1">
|
| 5 |
<data shape="?,?" element_type="i64" />
|
| 6 |
<output>
|
| 7 |
+
<port id="0" precision="I64" names="Parameter_282016">
|
| 8 |
<dim>-1</dim>
|
| 9 |
<dim>-1</dim>
|
| 10 |
</port>
|
| 11 |
</output>
|
| 12 |
</layer>
|
| 13 |
+
<layer id="1" name="Convert_282038" type="Convert" version="opset1">
|
| 14 |
+
<data destination_type="i32" />
|
| 15 |
+
<input>
|
| 16 |
+
<port id="0" precision="I64">
|
| 17 |
+
<dim>-1</dim>
|
| 18 |
+
<dim>-1</dim>
|
| 19 |
+
</port>
|
| 20 |
+
</input>
|
| 21 |
+
<output>
|
| 22 |
+
<port id="1" precision="I32">
|
| 23 |
+
<dim>-1</dim>
|
| 24 |
+
<dim>-1</dim>
|
| 25 |
+
</port>
|
| 26 |
+
</output>
|
| 27 |
+
</layer>
|
| 28 |
+
<layer id="2" name="Constant_281986" type="Const" version="opset1">
|
| 29 |
+
<data element_type="u8" shape="339118" offset="0" size="339118" />
|
| 30 |
<output>
|
| 31 |
<port id="0" precision="U8">
|
| 32 |
+
<dim>339118</dim>
|
| 33 |
</port>
|
| 34 |
</output>
|
| 35 |
</layer>
|
| 36 |
+
<layer id="3" name="StringTensorUnpack_281987" type="StringTensorUnpack" version="extension">
|
| 37 |
+
<data mode="begins_ends" />
|
| 38 |
<input>
|
| 39 |
+
<port id="0" precision="U8">
|
| 40 |
+
<dim>339118</dim>
|
| 41 |
+
</port>
|
| 42 |
+
</input>
|
| 43 |
+
<output>
|
| 44 |
+
<port id="1" precision="I32">
|
| 45 |
<dim>-1</dim>
|
| 46 |
+
</port>
|
| 47 |
+
<port id="2" precision="I32">
|
| 48 |
+
<dim>-1</dim>
|
| 49 |
+
</port>
|
| 50 |
+
<port id="3" precision="U8">
|
| 51 |
+
<dim>-1</dim>
|
| 52 |
+
</port>
|
| 53 |
+
</output>
|
| 54 |
+
</layer>
|
| 55 |
+
<layer id="4" name="VocabDecoder_282017" type="VocabDecoder" version="extension">
|
| 56 |
+
<data skip_tokens="0, 1, 32000, 32001, 32002, 32003, 32004, 32005, 32006, 32007, 32008, 32009, 32010" />
|
| 57 |
+
<input>
|
| 58 |
+
<port id="0" precision="I32">
|
| 59 |
+
<dim>-1</dim>
|
| 60 |
+
<dim>-1</dim>
|
| 61 |
+
</port>
|
| 62 |
+
<port id="1" precision="I32">
|
| 63 |
+
<dim>-1</dim>
|
| 64 |
+
</port>
|
| 65 |
+
<port id="2" precision="I32">
|
| 66 |
+
<dim>-1</dim>
|
| 67 |
+
</port>
|
| 68 |
+
<port id="3" precision="U8">
|
| 69 |
<dim>-1</dim>
|
| 70 |
</port>
|
| 71 |
</input>
|
| 72 |
<output>
|
| 73 |
+
<port id="4" precision="I32">
|
| 74 |
+
<dim>-1</dim>
|
| 75 |
+
</port>
|
| 76 |
+
<port id="5" precision="I32">
|
| 77 |
+
<dim>-1</dim>
|
| 78 |
+
</port>
|
| 79 |
+
<port id="6" precision="I32">
|
| 80 |
+
<dim>-1</dim>
|
| 81 |
+
</port>
|
| 82 |
+
<port id="7" precision="I32">
|
| 83 |
+
<dim>-1</dim>
|
| 84 |
+
</port>
|
| 85 |
+
<port id="8" precision="U8">
|
| 86 |
+
<dim>-1</dim>
|
| 87 |
+
</port>
|
| 88 |
+
</output>
|
| 89 |
+
</layer>
|
| 90 |
+
<layer id="5" name="Constant_282019" type="Const" version="opset1">
|
| 91 |
+
<data element_type="u8" shape="3" offset="339118" size="3" />
|
| 92 |
+
<output>
|
| 93 |
+
<port id="0" precision="U8">
|
| 94 |
+
<dim>3</dim>
|
| 95 |
+
</port>
|
| 96 |
+
</output>
|
| 97 |
+
</layer>
|
| 98 |
+
<layer id="6" name="Constant_282021" type="Const" version="opset1">
|
| 99 |
+
<data element_type="u8" shape="1" offset="339121" size="1" />
|
| 100 |
+
<output>
|
| 101 |
+
<port id="0" precision="U8">
|
| 102 |
+
<dim>1</dim>
|
| 103 |
+
</port>
|
| 104 |
+
</output>
|
| 105 |
+
</layer>
|
| 106 |
+
<layer id="7" name="RegexNormalization_282022" type="RegexNormalization" version="extension">
|
| 107 |
+
<data global_replace="true" />
|
| 108 |
+
<input>
|
| 109 |
+
<port id="0" precision="I32">
|
| 110 |
+
<dim>-1</dim>
|
| 111 |
+
</port>
|
| 112 |
<port id="1" precision="I32">
|
| 113 |
<dim>-1</dim>
|
| 114 |
+
</port>
|
| 115 |
+
<port id="2" precision="U8">
|
| 116 |
+
<dim>-1</dim>
|
| 117 |
+
</port>
|
| 118 |
+
<port id="3" precision="U8">
|
| 119 |
+
<dim>3</dim>
|
| 120 |
+
</port>
|
| 121 |
+
<port id="4" precision="U8">
|
| 122 |
+
<dim>1</dim>
|
| 123 |
+
</port>
|
| 124 |
+
</input>
|
| 125 |
+
<output>
|
| 126 |
+
<port id="5" precision="I32">
|
| 127 |
+
<dim>-1</dim>
|
| 128 |
+
</port>
|
| 129 |
+
<port id="6" precision="I32">
|
| 130 |
+
<dim>-1</dim>
|
| 131 |
+
</port>
|
| 132 |
+
<port id="7" precision="U8">
|
| 133 |
<dim>-1</dim>
|
| 134 |
</port>
|
| 135 |
</output>
|
| 136 |
</layer>
|
| 137 |
+
<layer id="8" name="ByteFallback_282023" type="ByteFallback" version="extension">
|
| 138 |
<input>
|
| 139 |
+
<port id="0" precision="I32">
|
| 140 |
+
<dim>-1</dim>
|
| 141 |
</port>
|
| 142 |
<port id="1" precision="I32">
|
| 143 |
<dim>-1</dim>
|
| 144 |
+
</port>
|
| 145 |
+
<port id="2" precision="U8">
|
| 146 |
<dim>-1</dim>
|
| 147 |
</port>
|
| 148 |
</input>
|
| 149 |
<output>
|
| 150 |
+
<port id="3" precision="I32">
|
| 151 |
+
<dim>-1</dim>
|
| 152 |
+
</port>
|
| 153 |
+
<port id="4" precision="I32">
|
| 154 |
+
<dim>-1</dim>
|
| 155 |
+
</port>
|
| 156 |
+
<port id="5" precision="U8">
|
| 157 |
+
<dim>-1</dim>
|
| 158 |
+
</port>
|
| 159 |
+
</output>
|
| 160 |
+
</layer>
|
| 161 |
+
<layer id="9" name="FuzeRagged_282024" type="FuzeRagged" version="extension">
|
| 162 |
+
<input>
|
| 163 |
+
<port id="0" precision="I32">
|
| 164 |
+
<dim>-1</dim>
|
| 165 |
+
</port>
|
| 166 |
+
<port id="1" precision="I32">
|
| 167 |
+
<dim>-1</dim>
|
| 168 |
+
</port>
|
| 169 |
<port id="2" precision="I32">
|
| 170 |
<dim>-1</dim>
|
| 171 |
</port>
|
| 172 |
<port id="3" precision="I32">
|
| 173 |
<dim>-1</dim>
|
| 174 |
</port>
|
| 175 |
+
</input>
|
| 176 |
+
<output>
|
| 177 |
+
<port id="4" precision="I32">
|
| 178 |
+
<dim>-1</dim>
|
| 179 |
+
</port>
|
| 180 |
+
<port id="5" precision="I32">
|
| 181 |
+
<dim>-1</dim>
|
| 182 |
+
</port>
|
| 183 |
+
</output>
|
| 184 |
+
</layer>
|
| 185 |
+
<layer id="10" name="Constant_282026" type="Const" version="opset1">
|
| 186 |
+
<data element_type="u8" shape="2" offset="339122" size="2" />
|
| 187 |
+
<output>
|
| 188 |
+
<port id="0" precision="U8">
|
| 189 |
+
<dim>2</dim>
|
| 190 |
+
</port>
|
| 191 |
+
</output>
|
| 192 |
+
</layer>
|
| 193 |
+
<layer id="11" name="Constant_282028" type="Const" version="opset1">
|
| 194 |
+
<data element_type="u8" shape="0" offset="339124" size="1" />
|
| 195 |
+
<output>
|
| 196 |
+
<port id="0" precision="U8">
|
| 197 |
+
<dim>0</dim>
|
| 198 |
+
</port>
|
| 199 |
+
</output>
|
| 200 |
+
</layer>
|
| 201 |
+
<layer id="12" name="RegexNormalization_282029" type="RegexNormalization" version="extension">
|
| 202 |
+
<data global_replace="true" />
|
| 203 |
+
<input>
|
| 204 |
+
<port id="0" precision="I32">
|
| 205 |
+
<dim>-1</dim>
|
| 206 |
+
</port>
|
| 207 |
+
<port id="1" precision="I32">
|
| 208 |
+
<dim>-1</dim>
|
| 209 |
+
</port>
|
| 210 |
+
<port id="2" precision="U8">
|
| 211 |
+
<dim>-1</dim>
|
| 212 |
+
</port>
|
| 213 |
+
<port id="3" precision="U8">
|
| 214 |
+
<dim>2</dim>
|
| 215 |
+
</port>
|
| 216 |
<port id="4" precision="U8">
|
| 217 |
+
<dim>0</dim>
|
| 218 |
+
</port>
|
| 219 |
+
</input>
|
| 220 |
+
<output>
|
| 221 |
+
<port id="5" precision="I32">
|
| 222 |
+
<dim>-1</dim>
|
| 223 |
+
</port>
|
| 224 |
+
<port id="6" precision="I32">
|
| 225 |
+
<dim>-1</dim>
|
| 226 |
+
</port>
|
| 227 |
+
<port id="7" precision="U8">
|
| 228 |
<dim>-1</dim>
|
| 229 |
</port>
|
| 230 |
</output>
|
| 231 |
</layer>
|
| 232 |
+
<layer id="13" name="StringTensorPack_282030" type="StringTensorPack" version="extension">
|
| 233 |
<data mode="begins_ends" />
|
| 234 |
<input>
|
| 235 |
<port id="0" precision="I32">
|
|
|
|
| 248 |
</port>
|
| 249 |
</output>
|
| 250 |
</layer>
|
| 251 |
+
<layer id="14" name="Result_282031" type="Result" version="opset1">
|
| 252 |
<input>
|
| 253 |
<port id="0" precision="STRING">
|
| 254 |
<dim>-1</dim>
|
|
|
|
| 257 |
</layer>
|
| 258 |
</layers>
|
| 259 |
<edges>
|
| 260 |
+
<edge from-layer="0" from-port="0" to-layer="1" to-port="0" />
|
| 261 |
+
<edge from-layer="1" from-port="1" to-layer="4" to-port="0" />
|
| 262 |
+
<edge from-layer="2" from-port="0" to-layer="3" to-port="0" />
|
| 263 |
+
<edge from-layer="3" from-port="1" to-layer="4" to-port="1" />
|
| 264 |
+
<edge from-layer="3" from-port="2" to-layer="4" to-port="2" />
|
| 265 |
+
<edge from-layer="3" from-port="3" to-layer="4" to-port="3" />
|
| 266 |
+
<edge from-layer="4" from-port="6" to-layer="7" to-port="0" />
|
| 267 |
+
<edge from-layer="4" from-port="7" to-layer="7" to-port="1" />
|
| 268 |
+
<edge from-layer="4" from-port="8" to-layer="7" to-port="2" />
|
| 269 |
+
<edge from-layer="4" from-port="5" to-layer="9" to-port="1" />
|
| 270 |
+
<edge from-layer="4" from-port="4" to-layer="9" to-port="0" />
|
| 271 |
+
<edge from-layer="5" from-port="0" to-layer="7" to-port="3" />
|
| 272 |
+
<edge from-layer="6" from-port="0" to-layer="7" to-port="4" />
|
| 273 |
+
<edge from-layer="7" from-port="7" to-layer="8" to-port="2" />
|
| 274 |
+
<edge from-layer="7" from-port="6" to-layer="8" to-port="1" />
|
| 275 |
+
<edge from-layer="7" from-port="5" to-layer="8" to-port="0" />
|
| 276 |
+
<edge from-layer="8" from-port="3" to-layer="9" to-port="2" />
|
| 277 |
+
<edge from-layer="8" from-port="4" to-layer="9" to-port="3" />
|
| 278 |
+
<edge from-layer="8" from-port="5" to-layer="12" to-port="2" />
|
| 279 |
+
<edge from-layer="9" from-port="4" to-layer="12" to-port="0" />
|
| 280 |
+
<edge from-layer="9" from-port="5" to-layer="12" to-port="1" />
|
| 281 |
+
<edge from-layer="10" from-port="0" to-layer="12" to-port="3" />
|
| 282 |
+
<edge from-layer="11" from-port="0" to-layer="12" to-port="4" />
|
| 283 |
+
<edge from-layer="12" from-port="5" to-layer="13" to-port="0" />
|
| 284 |
+
<edge from-layer="12" from-port="6" to-layer="13" to-port="1" />
|
| 285 |
+
<edge from-layer="12" from-port="7" to-layer="13" to-port="2" />
|
| 286 |
+
<edge from-layer="13" from-port="3" to-layer="14" to-port="0" />
|
| 287 |
</edges>
|
| 288 |
<rt_info>
|
| 289 |
<bos_token_id value="1" />
|
openvino_model.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4966cb2c4f416cb20b934a7130d4aa5aefa5007b56c817b55dcfe53b1506c415
|
| 3 |
+
size 2151489888
|
openvino_model.xml
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
openvino_tokenizer.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:012a18fef2df281b8293a03448630081625d563d29d199b482a64751609a5698
|
| 3 |
+
size 1262043
|
openvino_tokenizer.xml
CHANGED
|
@@ -1,64 +1,204 @@
|
|
| 1 |
<?xml version="1.0"?>
|
| 2 |
<net name="tokenizer" version="11">
|
| 3 |
<layers>
|
| 4 |
-
<layer id="0" name="
|
| 5 |
<data shape="?" element_type="string" />
|
| 6 |
<output>
|
| 7 |
-
<port id="0" precision="STRING" names="
|
| 8 |
<dim>-1</dim>
|
| 9 |
</port>
|
| 10 |
</output>
|
| 11 |
</layer>
|
| 12 |
-
<layer id="1" name="
|
| 13 |
-
<data element_type="
|
| 14 |
<output>
|
| 15 |
-
<port id="0" precision="
|
| 16 |
</output>
|
| 17 |
</layer>
|
| 18 |
-
<layer id="2" name="
|
| 19 |
-
<data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
<output>
|
| 21 |
-
<port id="
|
| 22 |
-
<dim
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
</port>
|
| 24 |
</output>
|
| 25 |
</layer>
|
| 26 |
-
<layer id="3" name="
|
| 27 |
-
<data
|
| 28 |
<input>
|
| 29 |
-
<port id="0" precision="
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
<dim>-1</dim>
|
| 31 |
</port>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
</input>
|
| 33 |
<output>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
<port id="1" precision="I32">
|
| 35 |
<dim>-1</dim>
|
| 36 |
</port>
|
| 37 |
<port id="2" precision="I32">
|
| 38 |
<dim>-1</dim>
|
| 39 |
</port>
|
| 40 |
-
<port id="3" precision="
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
<dim>-1</dim>
|
| 42 |
</port>
|
| 43 |
</output>
|
| 44 |
</layer>
|
| 45 |
-
<layer id="
|
| 46 |
-
<data element_type="u8" shape="7" offset="
|
| 47 |
<output>
|
| 48 |
<port id="0" precision="U8">
|
| 49 |
<dim>7</dim>
|
| 50 |
</port>
|
| 51 |
</output>
|
| 52 |
</layer>
|
| 53 |
-
<layer id="
|
| 54 |
-
<data element_type="u8" shape="
|
| 55 |
<output>
|
| 56 |
<port id="0" precision="U8">
|
| 57 |
-
<dim>
|
| 58 |
</port>
|
| 59 |
</output>
|
| 60 |
</layer>
|
| 61 |
-
<layer id="
|
| 62 |
<data global_replace="true" />
|
| 63 |
<input>
|
| 64 |
<port id="0" precision="I32">
|
|
@@ -70,27 +210,49 @@
|
|
| 70 |
<port id="2" precision="U8">
|
| 71 |
<dim>-1</dim>
|
| 72 |
</port>
|
| 73 |
-
<port id="3" precision="
|
| 74 |
-
<dim
|
| 75 |
</port>
|
| 76 |
<port id="4" precision="U8">
|
| 77 |
-
<dim>
|
|
|
|
|
|
|
|
|
|
| 78 |
</port>
|
| 79 |
</input>
|
| 80 |
<output>
|
| 81 |
-
<port id="
|
| 82 |
<dim>-1</dim>
|
| 83 |
</port>
|
| 84 |
-
<port id="
|
| 85 |
<dim>-1</dim>
|
| 86 |
</port>
|
| 87 |
-
<port id="
|
|
|
|
|
|
|
|
|
|
| 88 |
<dim>-1</dim>
|
| 89 |
</port>
|
| 90 |
</output>
|
| 91 |
</layer>
|
| 92 |
-
<layer id="
|
| 93 |
-
<data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
<input>
|
| 95 |
<port id="0" precision="I32">
|
| 96 |
<dim>-1</dim>
|
|
@@ -101,26 +263,44 @@
|
|
| 101 |
<port id="2" precision="U8">
|
| 102 |
<dim>-1</dim>
|
| 103 |
</port>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
</input>
|
| 105 |
<output>
|
| 106 |
-
<port id="
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
<dim>-1</dim>
|
| 108 |
</port>
|
| 109 |
</output>
|
| 110 |
</layer>
|
| 111 |
-
<layer id="
|
| 112 |
-
<data element_type="u8" shape="
|
| 113 |
<output>
|
| 114 |
<port id="0" precision="U8">
|
| 115 |
-
<dim>
|
| 116 |
</port>
|
| 117 |
</output>
|
| 118 |
</layer>
|
| 119 |
-
<layer id="
|
| 120 |
<data mode="begins_ends" />
|
| 121 |
<input>
|
| 122 |
<port id="0" precision="U8">
|
| 123 |
-
<dim>
|
| 124 |
</port>
|
| 125 |
</input>
|
| 126 |
<output>
|
|
@@ -135,89 +315,173 @@
|
|
| 135 |
</port>
|
| 136 |
</output>
|
| 137 |
</layer>
|
| 138 |
-
<layer id="
|
| 139 |
-
<data element_type="
|
| 140 |
<output>
|
| 141 |
-
<port id="0" precision="
|
| 142 |
-
<dim>
|
| 143 |
</port>
|
| 144 |
</output>
|
| 145 |
</layer>
|
| 146 |
-
<layer id="
|
| 147 |
-
<data
|
| 148 |
<input>
|
| 149 |
<port id="0" precision="U8">
|
| 150 |
-
<dim>
|
| 151 |
</port>
|
| 152 |
-
|
|
|
|
|
|
|
| 153 |
<dim>-1</dim>
|
| 154 |
</port>
|
| 155 |
<port id="2" precision="I32">
|
| 156 |
<dim>-1</dim>
|
| 157 |
</port>
|
| 158 |
-
<port id="3" precision="
|
| 159 |
<dim>-1</dim>
|
| 160 |
</port>
|
| 161 |
-
|
| 162 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
</port>
|
| 164 |
-
|
| 165 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 166 |
</port>
|
| 167 |
</input>
|
| 168 |
<output>
|
| 169 |
-
<port id="
|
| 170 |
<dim>-1</dim>
|
| 171 |
-
<dim>2</dim>
|
| 172 |
</port>
|
| 173 |
-
<port id="
|
| 174 |
<dim>-1</dim>
|
| 175 |
</port>
|
| 176 |
-
<port id="
|
| 177 |
-
<dim
|
| 178 |
</port>
|
| 179 |
</output>
|
| 180 |
</layer>
|
| 181 |
-
<layer id="
|
| 182 |
-
<data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 183 |
<input>
|
| 184 |
-
<port id="0" precision="
|
| 185 |
-
|
| 186 |
-
<dim>2</dim>
|
| 187 |
</port>
|
| 188 |
</input>
|
| 189 |
<output>
|
|
|
|
|
|
|
|
|
|
| 190 |
<port id="2" precision="I32">
|
| 191 |
<dim>-1</dim>
|
|
|
|
|
|
|
| 192 |
<dim>-1</dim>
|
| 193 |
</port>
|
| 194 |
</output>
|
| 195 |
</layer>
|
| 196 |
-
<layer id="
|
| 197 |
-
<data element_type="i32" shape="" offset="
|
| 198 |
<output>
|
| 199 |
-
<port id="0" precision="I32"
|
|
|
|
|
|
|
| 200 |
</output>
|
| 201 |
</layer>
|
| 202 |
-
<layer id="
|
| 203 |
-
<data
|
| 204 |
<input>
|
| 205 |
<port id="0" precision="I32">
|
| 206 |
<dim>-1</dim>
|
| 207 |
</port>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 208 |
</input>
|
| 209 |
<output>
|
| 210 |
-
<port id="
|
| 211 |
-
<dim
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 212 |
</port>
|
| 213 |
</output>
|
| 214 |
</layer>
|
| 215 |
-
<layer id="
|
| 216 |
-
<data
|
| 217 |
<input>
|
| 218 |
-
<port id="0" precision="I32"
|
| 219 |
-
|
| 220 |
-
|
|
|
|
|
|
|
| 221 |
</port>
|
| 222 |
</input>
|
| 223 |
<output>
|
|
@@ -226,137 +490,183 @@
|
|
| 226 |
</port>
|
| 227 |
</output>
|
| 228 |
</layer>
|
| 229 |
-
<layer id="
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 230 |
<input>
|
| 231 |
<port id="0" precision="I32">
|
| 232 |
<dim>-1</dim>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 233 |
<dim>-1</dim>
|
| 234 |
</port>
|
| 235 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 236 |
<dim>-1</dim>
|
| 237 |
-
<dim>2</dim>
|
| 238 |
</port>
|
| 239 |
-
<port id="
|
| 240 |
<dim>-1</dim>
|
| 241 |
</port>
|
| 242 |
</input>
|
| 243 |
<output>
|
| 244 |
-
<port id="
|
| 245 |
-
<dim>-1</dim>
|
| 246 |
<dim>-1</dim>
|
| 247 |
</port>
|
| 248 |
</output>
|
| 249 |
</layer>
|
| 250 |
-
<layer id="
|
| 251 |
-
<data element_type="
|
| 252 |
<output>
|
| 253 |
-
<port id="0" precision="
|
| 254 |
<dim>1</dim>
|
| 255 |
</port>
|
| 256 |
</output>
|
| 257 |
</layer>
|
| 258 |
-
<layer id="
|
| 259 |
-
<data mode="index" />
|
| 260 |
<input>
|
| 261 |
<port id="0" precision="I32">
|
| 262 |
<dim>-1</dim>
|
|
|
|
|
|
|
| 263 |
<dim>-1</dim>
|
| 264 |
</port>
|
| 265 |
-
<port id="
|
|
|
|
|
|
|
|
|
|
| 266 |
<dim>1</dim>
|
| 267 |
</port>
|
| 268 |
</input>
|
| 269 |
<output>
|
| 270 |
-
<port id="
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 271 |
<dim>-1</dim>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 272 |
<dim>-1</dim>
|
| 273 |
</port>
|
| 274 |
</output>
|
| 275 |
</layer>
|
| 276 |
-
<layer id="
|
| 277 |
-
<data
|
| 278 |
<input>
|
| 279 |
<port id="0" precision="I32">
|
| 280 |
<dim>-1</dim>
|
|
|
|
|
|
|
| 281 |
<dim>-1</dim>
|
| 282 |
</port>
|
| 283 |
</input>
|
| 284 |
<output>
|
| 285 |
-
<port id="
|
| 286 |
-
<dim>-1</dim>
|
| 287 |
<dim>-1</dim>
|
| 288 |
</port>
|
| 289 |
</output>
|
| 290 |
</layer>
|
| 291 |
-
<layer id="
|
| 292 |
-
<data element_type="i32" shape="" offset="
|
| 293 |
<output>
|
| 294 |
<port id="0" precision="I32" />
|
| 295 |
</output>
|
| 296 |
</layer>
|
| 297 |
-
<layer id="
|
| 298 |
-
<data
|
| 299 |
<input>
|
| 300 |
-
<port id="0" precision="I32"
|
| 301 |
-
|
| 302 |
-
<dim>2</dim>
|
| 303 |
</port>
|
|
|
|
| 304 |
</input>
|
| 305 |
<output>
|
| 306 |
-
<port id="2" precision="I32"
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
|
|
|
|
|
|
|
|
|
| 310 |
</output>
|
| 311 |
</layer>
|
| 312 |
-
<layer id="
|
|
|
|
| 313 |
<input>
|
| 314 |
<port id="0" precision="I32">
|
| 315 |
<dim>-1</dim>
|
| 316 |
-
<dim>-1</dim>
|
| 317 |
</port>
|
| 318 |
-
<port id="1" precision="
|
| 319 |
<dim>-1</dim>
|
| 320 |
-
<dim>2</dim>
|
| 321 |
</port>
|
| 322 |
<port id="2" precision="I32">
|
| 323 |
<dim>-1</dim>
|
| 324 |
</port>
|
|
|
|
|
|
|
| 325 |
</input>
|
| 326 |
<output>
|
| 327 |
-
<port id="
|
|
|
|
|
|
|
|
|
|
|
|
|
| 328 |
<dim>-1</dim>
|
| 329 |
<dim>-1</dim>
|
| 330 |
</port>
|
| 331 |
</output>
|
| 332 |
</layer>
|
| 333 |
-
<layer id="
|
| 334 |
-
<data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 335 |
<output>
|
| 336 |
-
<port id="
|
| 337 |
-
<dim
|
|
|
|
| 338 |
</port>
|
| 339 |
</output>
|
| 340 |
</layer>
|
| 341 |
-
<layer id="
|
| 342 |
-
<data
|
| 343 |
<input>
|
| 344 |
<port id="0" precision="I32">
|
| 345 |
<dim>-1</dim>
|
| 346 |
<dim>-1</dim>
|
| 347 |
</port>
|
| 348 |
-
<port id="1" precision="I64">
|
| 349 |
-
<dim>1</dim>
|
| 350 |
-
</port>
|
| 351 |
</input>
|
| 352 |
<output>
|
| 353 |
-
<port id="
|
| 354 |
<dim>-1</dim>
|
| 355 |
<dim>-1</dim>
|
| 356 |
</port>
|
| 357 |
</output>
|
| 358 |
</layer>
|
| 359 |
-
<layer id="
|
| 360 |
<data destination_type="i64" />
|
| 361 |
<input>
|
| 362 |
<port id="0" precision="I32">
|
|
@@ -371,7 +681,7 @@
|
|
| 371 |
</port>
|
| 372 |
</output>
|
| 373 |
</layer>
|
| 374 |
-
<layer id="
|
| 375 |
<input>
|
| 376 |
<port id="0" precision="I64">
|
| 377 |
<dim>-1</dim>
|
|
@@ -379,7 +689,7 @@
|
|
| 379 |
</port>
|
| 380 |
</input>
|
| 381 |
</layer>
|
| 382 |
-
<layer id="
|
| 383 |
<input>
|
| 384 |
<port id="0" precision="I64">
|
| 385 |
<dim>-1</dim>
|
|
@@ -389,43 +699,83 @@
|
|
| 389 |
</layer>
|
| 390 |
</layers>
|
| 391 |
<edges>
|
| 392 |
-
<edge from-layer="0" from-port="0" to-layer="
|
| 393 |
-
<edge from-layer="1" from-port="0" to-layer="
|
| 394 |
-
<edge from-layer="2" from-port="
|
|
|
|
|
|
|
|
|
|
| 395 |
<edge from-layer="3" from-port="1" to-layer="6" to-port="0" />
|
| 396 |
-
<edge from-layer="
|
| 397 |
-
<edge from-layer="
|
| 398 |
-
<edge from-layer="
|
| 399 |
-
<edge from-layer="
|
| 400 |
-
<edge from-layer="
|
| 401 |
-
<edge from-layer="
|
| 402 |
-
<edge from-layer="
|
| 403 |
-
<edge from-layer="
|
| 404 |
-
<edge from-layer="
|
| 405 |
-
<edge from-layer="
|
| 406 |
-
<edge from-layer="
|
| 407 |
-
<edge from-layer="
|
| 408 |
-
<edge from-layer="
|
| 409 |
-
<edge from-layer="
|
| 410 |
-
<edge from-layer="
|
| 411 |
-
<edge from-layer="
|
| 412 |
-
<edge from-layer="
|
| 413 |
-
<edge from-layer="
|
| 414 |
-
<edge from-layer="
|
| 415 |
-
<edge from-layer="
|
| 416 |
-
<edge from-layer="
|
| 417 |
-
<edge from-layer="
|
| 418 |
-
<edge from-layer="
|
| 419 |
-
<edge from-layer="
|
| 420 |
-
<edge from-layer="
|
| 421 |
-
<edge from-layer="
|
| 422 |
-
<edge from-layer="
|
| 423 |
-
<edge from-layer="21" from-port="
|
| 424 |
-
<edge from-layer="
|
| 425 |
-
<edge from-layer="
|
| 426 |
-
<edge from-layer="
|
| 427 |
-
<edge from-layer="
|
| 428 |
-
<edge from-layer="
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 429 |
</edges>
|
| 430 |
<rt_info>
|
| 431 |
<bos_token_id value="1" />
|
|
|
|
| 1 |
<?xml version="1.0"?>
|
| 2 |
<net name="tokenizer" version="11">
|
| 3 |
<layers>
|
| 4 |
+
<layer id="0" name="Parameter_281898" type="Parameter" version="opset1">
|
| 5 |
<data shape="?" element_type="string" />
|
| 6 |
<output>
|
| 7 |
+
<port id="0" precision="STRING" names="Parameter_281898">
|
| 8 |
<dim>-1</dim>
|
| 9 |
</port>
|
| 10 |
</output>
|
| 11 |
</layer>
|
| 12 |
+
<layer id="1" name="Constant_281904" type="Const" version="opset1">
|
| 13 |
+
<data element_type="i64" shape="" offset="0" size="8" />
|
| 14 |
<output>
|
| 15 |
+
<port id="0" precision="I64" />
|
| 16 |
</output>
|
| 17 |
</layer>
|
| 18 |
+
<layer id="2" name="StringTensorUnpack_281899" type="StringTensorUnpack" version="extension">
|
| 19 |
+
<data mode="begins_ends" />
|
| 20 |
+
<input>
|
| 21 |
+
<port id="0" precision="STRING">
|
| 22 |
+
<dim>-1</dim>
|
| 23 |
+
</port>
|
| 24 |
+
</input>
|
| 25 |
<output>
|
| 26 |
+
<port id="1" precision="I32">
|
| 27 |
+
<dim>-1</dim>
|
| 28 |
+
</port>
|
| 29 |
+
<port id="2" precision="I32">
|
| 30 |
+
<dim>-1</dim>
|
| 31 |
+
</port>
|
| 32 |
+
<port id="3" precision="U8">
|
| 33 |
+
<dim>-1</dim>
|
| 34 |
</port>
|
| 35 |
</output>
|
| 36 |
</layer>
|
| 37 |
+
<layer id="3" name="ShapeOf_281900" type="ShapeOf" version="opset3">
|
| 38 |
+
<data output_type="i64" />
|
| 39 |
<input>
|
| 40 |
+
<port id="0" precision="I32">
|
| 41 |
+
<dim>-1</dim>
|
| 42 |
+
</port>
|
| 43 |
+
</input>
|
| 44 |
+
<output>
|
| 45 |
+
<port id="1" precision="I64">
|
| 46 |
+
<dim>1</dim>
|
| 47 |
+
</port>
|
| 48 |
+
</output>
|
| 49 |
+
</layer>
|
| 50 |
+
<layer id="4" name="Constant_281901" type="Const" version="opset1">
|
| 51 |
+
<data element_type="i64" shape="" offset="0" size="8" />
|
| 52 |
+
<output>
|
| 53 |
+
<port id="0" precision="I64" />
|
| 54 |
+
</output>
|
| 55 |
+
</layer>
|
| 56 |
+
<layer id="5" name="Constant_281902" type="Const" version="opset1">
|
| 57 |
+
<data element_type="i64" shape="" offset="0" size="8" />
|
| 58 |
+
<output>
|
| 59 |
+
<port id="0" precision="I64" />
|
| 60 |
+
</output>
|
| 61 |
+
</layer>
|
| 62 |
+
<layer id="6" name="Gather_281903" type="Gather" version="opset8">
|
| 63 |
+
<data batch_dims="0" />
|
| 64 |
+
<input>
|
| 65 |
+
<port id="0" precision="I64">
|
| 66 |
+
<dim>1</dim>
|
| 67 |
+
</port>
|
| 68 |
+
<port id="1" precision="I64" />
|
| 69 |
+
<port id="2" precision="I64" />
|
| 70 |
+
</input>
|
| 71 |
+
<output>
|
| 72 |
+
<port id="3" precision="I64" />
|
| 73 |
+
</output>
|
| 74 |
+
</layer>
|
| 75 |
+
<layer id="7" name="Constant_281905" type="Const" version="opset1">
|
| 76 |
+
<data element_type="i64" shape="" offset="8" size="8" />
|
| 77 |
+
<output>
|
| 78 |
+
<port id="0" precision="I64" />
|
| 79 |
+
</output>
|
| 80 |
+
</layer>
|
| 81 |
+
<layer id="8" name="Range_281906" type="Range" version="opset4">
|
| 82 |
+
<data output_type="i32" />
|
| 83 |
+
<input>
|
| 84 |
+
<port id="0" precision="I64" />
|
| 85 |
+
<port id="1" precision="I64" />
|
| 86 |
+
<port id="2" precision="I64" />
|
| 87 |
+
</input>
|
| 88 |
+
<output>
|
| 89 |
+
<port id="3" precision="I32">
|
| 90 |
<dim>-1</dim>
|
| 91 |
</port>
|
| 92 |
+
</output>
|
| 93 |
+
</layer>
|
| 94 |
+
<layer id="9" name="Constant_281907" type="Const" version="opset1">
|
| 95 |
+
<data element_type="i64" shape="" offset="8" size="8" />
|
| 96 |
+
<output>
|
| 97 |
+
<port id="0" precision="I64" />
|
| 98 |
+
</output>
|
| 99 |
+
</layer>
|
| 100 |
+
<layer id="10" name="Constant_281908" type="Const" version="opset1">
|
| 101 |
+
<data element_type="i64" shape="" offset="8" size="8" />
|
| 102 |
+
<output>
|
| 103 |
+
<port id="0" precision="I64" />
|
| 104 |
+
</output>
|
| 105 |
+
</layer>
|
| 106 |
+
<layer id="11" name="Add_281909" type="Add" version="opset1">
|
| 107 |
+
<data auto_broadcast="numpy" />
|
| 108 |
+
<input>
|
| 109 |
+
<port id="0" precision="I64" />
|
| 110 |
+
<port id="1" precision="I64" />
|
| 111 |
</input>
|
| 112 |
<output>
|
| 113 |
+
<port id="2" precision="I64" />
|
| 114 |
+
</output>
|
| 115 |
+
</layer>
|
| 116 |
+
<layer id="12" name="Constant_281910" type="Const" version="opset1">
|
| 117 |
+
<data element_type="i64" shape="" offset="8" size="8" />
|
| 118 |
+
<output>
|
| 119 |
+
<port id="0" precision="I64" />
|
| 120 |
+
</output>
|
| 121 |
+
</layer>
|
| 122 |
+
<layer id="13" name="Range_281911" type="Range" version="opset4">
|
| 123 |
+
<data output_type="i32" />
|
| 124 |
+
<input>
|
| 125 |
+
<port id="0" precision="I64" />
|
| 126 |
+
<port id="1" precision="I64" />
|
| 127 |
+
<port id="2" precision="I64" />
|
| 128 |
+
</input>
|
| 129 |
+
<output>
|
| 130 |
+
<port id="3" precision="I32">
|
| 131 |
+
<dim>-1</dim>
|
| 132 |
+
</port>
|
| 133 |
+
</output>
|
| 134 |
+
</layer>
|
| 135 |
+
<layer id="14" name="Constant_281973" type="Const" version="opset1">
|
| 136 |
+
<data element_type="u8" shape="328" offset="16" size="328" />
|
| 137 |
+
<output>
|
| 138 |
+
<port id="0" precision="U8">
|
| 139 |
+
<dim>328</dim>
|
| 140 |
+
</port>
|
| 141 |
+
</output>
|
| 142 |
+
</layer>
|
| 143 |
+
<layer id="15" name="SpecialTokensSplit_281974" type="SpecialTokensSplit" version="extension">
|
| 144 |
+
<input>
|
| 145 |
+
<port id="0" precision="I32">
|
| 146 |
+
<dim>-1</dim>
|
| 147 |
+
</port>
|
| 148 |
<port id="1" precision="I32">
|
| 149 |
<dim>-1</dim>
|
| 150 |
</port>
|
| 151 |
<port id="2" precision="I32">
|
| 152 |
<dim>-1</dim>
|
| 153 |
</port>
|
| 154 |
+
<port id="3" precision="I32">
|
| 155 |
+
<dim>-1</dim>
|
| 156 |
+
</port>
|
| 157 |
+
<port id="4" precision="U8">
|
| 158 |
+
<dim>-1</dim>
|
| 159 |
+
</port>
|
| 160 |
+
<port id="5" precision="U8">
|
| 161 |
+
<dim>328</dim>
|
| 162 |
+
</port>
|
| 163 |
+
</input>
|
| 164 |
+
<output>
|
| 165 |
+
<port id="6" precision="I32">
|
| 166 |
+
<dim>-1</dim>
|
| 167 |
+
</port>
|
| 168 |
+
<port id="7" precision="I32">
|
| 169 |
+
<dim>-1</dim>
|
| 170 |
+
</port>
|
| 171 |
+
<port id="8" precision="I32">
|
| 172 |
+
<dim>-1</dim>
|
| 173 |
+
</port>
|
| 174 |
+
<port id="9" precision="I32">
|
| 175 |
+
<dim>-1</dim>
|
| 176 |
+
</port>
|
| 177 |
+
<port id="10" precision="U8">
|
| 178 |
+
<dim>-1</dim>
|
| 179 |
+
</port>
|
| 180 |
+
<port id="11" precision="BOOL">
|
| 181 |
<dim>-1</dim>
|
| 182 |
</port>
|
| 183 |
</output>
|
| 184 |
</layer>
|
| 185 |
+
<layer id="16" name="Constant_281976" type="Const" version="opset1">
|
| 186 |
+
<data element_type="u8" shape="7" offset="344" size="7" />
|
| 187 |
<output>
|
| 188 |
<port id="0" precision="U8">
|
| 189 |
<dim>7</dim>
|
| 190 |
</port>
|
| 191 |
</output>
|
| 192 |
</layer>
|
| 193 |
+
<layer id="17" name="Constant_281978" type="Const" version="opset1">
|
| 194 |
+
<data element_type="u8" shape="5" offset="351" size="5" />
|
| 195 |
<output>
|
| 196 |
<port id="0" precision="U8">
|
| 197 |
+
<dim>5</dim>
|
| 198 |
</port>
|
| 199 |
</output>
|
| 200 |
</layer>
|
| 201 |
+
<layer id="18" name="RegexNormalization_281979" type="RegexNormalization" version="extension">
|
| 202 |
<data global_replace="true" />
|
| 203 |
<input>
|
| 204 |
<port id="0" precision="I32">
|
|
|
|
| 210 |
<port id="2" precision="U8">
|
| 211 |
<dim>-1</dim>
|
| 212 |
</port>
|
| 213 |
+
<port id="3" precision="BOOL">
|
| 214 |
+
<dim>-1</dim>
|
| 215 |
</port>
|
| 216 |
<port id="4" precision="U8">
|
| 217 |
+
<dim>7</dim>
|
| 218 |
+
</port>
|
| 219 |
+
<port id="5" precision="U8">
|
| 220 |
+
<dim>5</dim>
|
| 221 |
</port>
|
| 222 |
</input>
|
| 223 |
<output>
|
| 224 |
+
<port id="6" precision="I32">
|
| 225 |
<dim>-1</dim>
|
| 226 |
</port>
|
| 227 |
+
<port id="7" precision="I32">
|
| 228 |
<dim>-1</dim>
|
| 229 |
</port>
|
| 230 |
+
<port id="8" precision="U8">
|
| 231 |
+
<dim>-1</dim>
|
| 232 |
+
</port>
|
| 233 |
+
<port id="9" precision="BOOL">
|
| 234 |
<dim>-1</dim>
|
| 235 |
</port>
|
| 236 |
</output>
|
| 237 |
</layer>
|
| 238 |
+
<layer id="19" name="Constant_281981" type="Const" version="opset1">
|
| 239 |
+
<data element_type="u8" shape="1" offset="356" size="1" />
|
| 240 |
+
<output>
|
| 241 |
+
<port id="0" precision="U8">
|
| 242 |
+
<dim>1</dim>
|
| 243 |
+
</port>
|
| 244 |
+
</output>
|
| 245 |
+
</layer>
|
| 246 |
+
<layer id="20" name="Constant_281983" type="Const" version="opset1">
|
| 247 |
+
<data element_type="u8" shape="3" offset="357" size="3" />
|
| 248 |
+
<output>
|
| 249 |
+
<port id="0" precision="U8">
|
| 250 |
+
<dim>3</dim>
|
| 251 |
+
</port>
|
| 252 |
+
</output>
|
| 253 |
+
</layer>
|
| 254 |
+
<layer id="21" name="RegexNormalization_281984" type="RegexNormalization" version="extension">
|
| 255 |
+
<data global_replace="true" />
|
| 256 |
<input>
|
| 257 |
<port id="0" precision="I32">
|
| 258 |
<dim>-1</dim>
|
|
|
|
| 263 |
<port id="2" precision="U8">
|
| 264 |
<dim>-1</dim>
|
| 265 |
</port>
|
| 266 |
+
<port id="3" precision="BOOL">
|
| 267 |
+
<dim>-1</dim>
|
| 268 |
+
</port>
|
| 269 |
+
<port id="4" precision="U8">
|
| 270 |
+
<dim>1</dim>
|
| 271 |
+
</port>
|
| 272 |
+
<port id="5" precision="U8">
|
| 273 |
+
<dim>3</dim>
|
| 274 |
+
</port>
|
| 275 |
</input>
|
| 276 |
<output>
|
| 277 |
+
<port id="6" precision="I32">
|
| 278 |
+
<dim>-1</dim>
|
| 279 |
+
</port>
|
| 280 |
+
<port id="7" precision="I32">
|
| 281 |
+
<dim>-1</dim>
|
| 282 |
+
</port>
|
| 283 |
+
<port id="8" precision="U8">
|
| 284 |
+
<dim>-1</dim>
|
| 285 |
+
</port>
|
| 286 |
+
<port id="9" precision="BOOL">
|
| 287 |
<dim>-1</dim>
|
| 288 |
</port>
|
| 289 |
</output>
|
| 290 |
</layer>
|
| 291 |
+
<layer id="22" name="Constant_281986" type="Const" version="opset1">
|
| 292 |
+
<data element_type="u8" shape="339118" offset="360" size="339118" />
|
| 293 |
<output>
|
| 294 |
<port id="0" precision="U8">
|
| 295 |
+
<dim>339118</dim>
|
| 296 |
</port>
|
| 297 |
</output>
|
| 298 |
</layer>
|
| 299 |
+
<layer id="23" name="StringTensorUnpack_281987" type="StringTensorUnpack" version="extension">
|
| 300 |
<data mode="begins_ends" />
|
| 301 |
<input>
|
| 302 |
<port id="0" precision="U8">
|
| 303 |
+
<dim>339118</dim>
|
| 304 |
</port>
|
| 305 |
</input>
|
| 306 |
<output>
|
|
|
|
| 315 |
</port>
|
| 316 |
</output>
|
| 317 |
</layer>
|
| 318 |
+
<layer id="24" name="Constant_281992" type="Const" version="opset1">
|
| 319 |
+
<data element_type="u8" shape="499127" offset="339478" size="499127" />
|
| 320 |
<output>
|
| 321 |
+
<port id="0" precision="U8">
|
| 322 |
+
<dim>499127</dim>
|
| 323 |
</port>
|
| 324 |
</output>
|
| 325 |
</layer>
|
| 326 |
+
<layer id="25" name="StringTensorUnpack_281993" type="StringTensorUnpack" version="extension">
|
| 327 |
+
<data mode="begins_ends" />
|
| 328 |
<input>
|
| 329 |
<port id="0" precision="U8">
|
| 330 |
+
<dim>499127</dim>
|
| 331 |
</port>
|
| 332 |
+
</input>
|
| 333 |
+
<output>
|
| 334 |
+
<port id="1" precision="I32">
|
| 335 |
<dim>-1</dim>
|
| 336 |
</port>
|
| 337 |
<port id="2" precision="I32">
|
| 338 |
<dim>-1</dim>
|
| 339 |
</port>
|
| 340 |
+
<port id="3" precision="U8">
|
| 341 |
<dim>-1</dim>
|
| 342 |
</port>
|
| 343 |
+
</output>
|
| 344 |
+
</layer>
|
| 345 |
+
<layer id="26" name="Constant_281995" type="Const" version="opset1">
|
| 346 |
+
<data element_type="u8" shape="412810" offset="838605" size="412810" />
|
| 347 |
+
<output>
|
| 348 |
+
<port id="0" precision="U8">
|
| 349 |
+
<dim>412810</dim>
|
| 350 |
</port>
|
| 351 |
+
</output>
|
| 352 |
+
</layer>
|
| 353 |
+
<layer id="27" name="StringTensorUnpack_281996" type="StringTensorUnpack" version="extension">
|
| 354 |
+
<data mode="begins_ends" />
|
| 355 |
+
<input>
|
| 356 |
+
<port id="0" precision="U8">
|
| 357 |
+
<dim>412810</dim>
|
| 358 |
</port>
|
| 359 |
</input>
|
| 360 |
<output>
|
| 361 |
+
<port id="1" precision="I32">
|
| 362 |
<dim>-1</dim>
|
|
|
|
| 363 |
</port>
|
| 364 |
+
<port id="2" precision="I32">
|
| 365 |
<dim>-1</dim>
|
| 366 |
</port>
|
| 367 |
+
<port id="3" precision="U8">
|
| 368 |
+
<dim>-1</dim>
|
| 369 |
</port>
|
| 370 |
</output>
|
| 371 |
</layer>
|
| 372 |
+
<layer id="28" name="Constant_281989" type="Const" version="opset1">
|
| 373 |
+
<data element_type="u8" shape="8716" offset="1251415" size="8716" />
|
| 374 |
+
<output>
|
| 375 |
+
<port id="0" precision="U8">
|
| 376 |
+
<dim>8716</dim>
|
| 377 |
+
</port>
|
| 378 |
+
</output>
|
| 379 |
+
</layer>
|
| 380 |
+
<layer id="29" name="StringTensorUnpack_281990" type="StringTensorUnpack" version="extension">
|
| 381 |
+
<data mode="begins_ends" />
|
| 382 |
<input>
|
| 383 |
+
<port id="0" precision="U8">
|
| 384 |
+
<dim>8716</dim>
|
|
|
|
| 385 |
</port>
|
| 386 |
</input>
|
| 387 |
<output>
|
| 388 |
+
<port id="1" precision="I32">
|
| 389 |
+
<dim>-1</dim>
|
| 390 |
+
</port>
|
| 391 |
<port id="2" precision="I32">
|
| 392 |
<dim>-1</dim>
|
| 393 |
+
</port>
|
| 394 |
+
<port id="3" precision="U8">
|
| 395 |
<dim>-1</dim>
|
| 396 |
</port>
|
| 397 |
</output>
|
| 398 |
</layer>
|
| 399 |
+
<layer id="30" name="Constant_281997" type="Const" version="opset1">
|
| 400 |
+
<data element_type="i32" shape="475" offset="1260131" size="1900" />
|
| 401 |
<output>
|
| 402 |
+
<port id="0" precision="I32">
|
| 403 |
+
<dim>475</dim>
|
| 404 |
+
</port>
|
| 405 |
</output>
|
| 406 |
</layer>
|
| 407 |
+
<layer id="31" name="BPETokenizer_281998" type="BPETokenizer" version="extension">
|
| 408 |
+
<data unk_token="<unk>" fuse_unk="true" suffix_indicator="" end_suffix="" byte_fallback="true" cache_capacity="20000" />
|
| 409 |
<input>
|
| 410 |
<port id="0" precision="I32">
|
| 411 |
<dim>-1</dim>
|
| 412 |
</port>
|
| 413 |
+
<port id="1" precision="I32">
|
| 414 |
+
<dim>-1</dim>
|
| 415 |
+
</port>
|
| 416 |
+
<port id="2" precision="I32">
|
| 417 |
+
<dim>-1</dim>
|
| 418 |
+
</port>
|
| 419 |
+
<port id="3" precision="I32">
|
| 420 |
+
<dim>-1</dim>
|
| 421 |
+
</port>
|
| 422 |
+
<port id="4" precision="U8">
|
| 423 |
+
<dim>-1</dim>
|
| 424 |
+
</port>
|
| 425 |
+
<port id="5" precision="I32">
|
| 426 |
+
<dim>-1</dim>
|
| 427 |
+
</port>
|
| 428 |
+
<port id="6" precision="I32">
|
| 429 |
+
<dim>-1</dim>
|
| 430 |
+
</port>
|
| 431 |
+
<port id="7" precision="U8">
|
| 432 |
+
<dim>-1</dim>
|
| 433 |
+
</port>
|
| 434 |
+
<port id="8" precision="I32">
|
| 435 |
+
<dim>-1</dim>
|
| 436 |
+
</port>
|
| 437 |
+
<port id="9" precision="I32">
|
| 438 |
+
<dim>-1</dim>
|
| 439 |
+
</port>
|
| 440 |
+
<port id="10" precision="U8">
|
| 441 |
+
<dim>-1</dim>
|
| 442 |
+
</port>
|
| 443 |
+
<port id="11" precision="I32">
|
| 444 |
+
<dim>-1</dim>
|
| 445 |
+
</port>
|
| 446 |
+
<port id="12" precision="I32">
|
| 447 |
+
<dim>-1</dim>
|
| 448 |
+
</port>
|
| 449 |
+
<port id="13" precision="U8">
|
| 450 |
+
<dim>-1</dim>
|
| 451 |
+
</port>
|
| 452 |
+
<port id="14" precision="I32">
|
| 453 |
+
<dim>-1</dim>
|
| 454 |
+
</port>
|
| 455 |
+
<port id="15" precision="I32">
|
| 456 |
+
<dim>-1</dim>
|
| 457 |
+
</port>
|
| 458 |
+
<port id="16" precision="U8">
|
| 459 |
+
<dim>-1</dim>
|
| 460 |
+
</port>
|
| 461 |
+
<port id="17" precision="I32">
|
| 462 |
+
<dim>475</dim>
|
| 463 |
+
</port>
|
| 464 |
</input>
|
| 465 |
<output>
|
| 466 |
+
<port id="18" precision="I32">
|
| 467 |
+
<dim>-1</dim>
|
| 468 |
+
</port>
|
| 469 |
+
<port id="19" precision="I32">
|
| 470 |
+
<dim>-1</dim>
|
| 471 |
+
</port>
|
| 472 |
+
<port id="20" precision="I32">
|
| 473 |
+
<dim>-1</dim>
|
| 474 |
</port>
|
| 475 |
</output>
|
| 476 |
</layer>
|
| 477 |
+
<layer id="32" name="Subtract_281999" type="Subtract" version="opset1">
|
| 478 |
+
<data auto_broadcast="numpy" />
|
| 479 |
<input>
|
| 480 |
+
<port id="0" precision="I32">
|
| 481 |
+
<dim>-1</dim>
|
| 482 |
+
</port>
|
| 483 |
+
<port id="1" precision="I32">
|
| 484 |
+
<dim>-1</dim>
|
| 485 |
</port>
|
| 486 |
</input>
|
| 487 |
<output>
|
|
|
|
| 490 |
</port>
|
| 491 |
</output>
|
| 492 |
</layer>
|
| 493 |
+
<layer id="33" name="Constant_282000" type="Const" version="opset1">
|
| 494 |
+
<data element_type="i32" shape="" offset="1262031" size="4" />
|
| 495 |
+
<output>
|
| 496 |
+
<port id="0" precision="I32" />
|
| 497 |
+
</output>
|
| 498 |
+
</layer>
|
| 499 |
+
<layer id="34" name="Minimum_282001" type="Minimum" version="opset1">
|
| 500 |
+
<data auto_broadcast="numpy" />
|
| 501 |
<input>
|
| 502 |
<port id="0" precision="I32">
|
| 503 |
<dim>-1</dim>
|
| 504 |
+
</port>
|
| 505 |
+
<port id="1" precision="I32" />
|
| 506 |
+
</input>
|
| 507 |
+
<output>
|
| 508 |
+
<port id="2" precision="I32">
|
| 509 |
<dim>-1</dim>
|
| 510 |
</port>
|
| 511 |
+
</output>
|
| 512 |
+
</layer>
|
| 513 |
+
<layer id="35" name="Subtract_282002" type="Subtract" version="opset1">
|
| 514 |
+
<data auto_broadcast="numpy" />
|
| 515 |
+
<input>
|
| 516 |
+
<port id="0" precision="I32">
|
| 517 |
<dim>-1</dim>
|
|
|
|
| 518 |
</port>
|
| 519 |
+
<port id="1" precision="I32">
|
| 520 |
<dim>-1</dim>
|
| 521 |
</port>
|
| 522 |
</input>
|
| 523 |
<output>
|
| 524 |
+
<port id="2" precision="I32">
|
|
|
|
| 525 |
<dim>-1</dim>
|
| 526 |
</port>
|
| 527 |
</output>
|
| 528 |
</layer>
|
| 529 |
+
<layer id="36" name="Constant_282003" type="Const" version="opset1">
|
| 530 |
+
<data element_type="i32" shape="1" offset="1262035" size="4" />
|
| 531 |
<output>
|
| 532 |
+
<port id="0" precision="I32">
|
| 533 |
<dim>1</dim>
|
| 534 |
</port>
|
| 535 |
</output>
|
| 536 |
</layer>
|
| 537 |
+
<layer id="37" name="CombineSegments_282004" type="CombineSegments" version="extension">
|
|
|
|
| 538 |
<input>
|
| 539 |
<port id="0" precision="I32">
|
| 540 |
<dim>-1</dim>
|
| 541 |
+
</port>
|
| 542 |
+
<port id="1" precision="I32">
|
| 543 |
<dim>-1</dim>
|
| 544 |
</port>
|
| 545 |
+
<port id="2" precision="I32">
|
| 546 |
+
<dim>-1</dim>
|
| 547 |
+
</port>
|
| 548 |
+
<port id="3" precision="I32">
|
| 549 |
<dim>1</dim>
|
| 550 |
</port>
|
| 551 |
</input>
|
| 552 |
<output>
|
| 553 |
+
<port id="4" precision="I32">
|
| 554 |
+
<dim>-1</dim>
|
| 555 |
+
</port>
|
| 556 |
+
<port id="5" precision="I32">
|
| 557 |
+
<dim>-1</dim>
|
| 558 |
+
</port>
|
| 559 |
+
<port id="6" precision="I32">
|
| 560 |
+
<dim>-1</dim>
|
| 561 |
+
</port>
|
| 562 |
+
<port id="7" precision="I32">
|
| 563 |
<dim>-1</dim>
|
| 564 |
+
</port>
|
| 565 |
+
<port id="8" precision="I32">
|
| 566 |
+
<dim>-1</dim>
|
| 567 |
+
</port>
|
| 568 |
+
<port id="9" precision="I32">
|
| 569 |
<dim>-1</dim>
|
| 570 |
</port>
|
| 571 |
</output>
|
| 572 |
</layer>
|
| 573 |
+
<layer id="38" name="Subtract_282005" type="Subtract" version="opset1">
|
| 574 |
+
<data auto_broadcast="numpy" />
|
| 575 |
<input>
|
| 576 |
<port id="0" precision="I32">
|
| 577 |
<dim>-1</dim>
|
| 578 |
+
</port>
|
| 579 |
+
<port id="1" precision="I32">
|
| 580 |
<dim>-1</dim>
|
| 581 |
</port>
|
| 582 |
</input>
|
| 583 |
<output>
|
| 584 |
+
<port id="2" precision="I32">
|
|
|
|
| 585 |
<dim>-1</dim>
|
| 586 |
</port>
|
| 587 |
</output>
|
| 588 |
</layer>
|
| 589 |
+
<layer id="39" name="Constant_282006" type="Const" version="opset1">
|
| 590 |
+
<data element_type="i32" shape="" offset="1262035" size="4" />
|
| 591 |
<output>
|
| 592 |
<port id="0" precision="I32" />
|
| 593 |
</output>
|
| 594 |
</layer>
|
| 595 |
+
<layer id="40" name="ReduceMax_282007" type="ReduceMax" version="opset1">
|
| 596 |
+
<data keep_dims="false" />
|
| 597 |
<input>
|
| 598 |
+
<port id="0" precision="I32">
|
| 599 |
+
<dim>-1</dim>
|
|
|
|
| 600 |
</port>
|
| 601 |
+
<port id="1" precision="I32" />
|
| 602 |
</input>
|
| 603 |
<output>
|
| 604 |
+
<port id="2" precision="I32" />
|
| 605 |
+
</output>
|
| 606 |
+
</layer>
|
| 607 |
+
<layer id="41" name="Constant_282008" type="Const" version="opset1">
|
| 608 |
+
<data element_type="i32" shape="" offset="1262039" size="4" />
|
| 609 |
+
<output>
|
| 610 |
+
<port id="0" precision="I32" />
|
| 611 |
</output>
|
| 612 |
</layer>
|
| 613 |
+
<layer id="42" name="RaggedToDense_282009" type="RaggedToDense" version="extension">
|
| 614 |
+
<data pad_right="false" />
|
| 615 |
<input>
|
| 616 |
<port id="0" precision="I32">
|
| 617 |
<dim>-1</dim>
|
|
|
|
| 618 |
</port>
|
| 619 |
+
<port id="1" precision="I32">
|
| 620 |
<dim>-1</dim>
|
|
|
|
| 621 |
</port>
|
| 622 |
<port id="2" precision="I32">
|
| 623 |
<dim>-1</dim>
|
| 624 |
</port>
|
| 625 |
+
<port id="3" precision="I32" />
|
| 626 |
+
<port id="4" precision="I32" />
|
| 627 |
</input>
|
| 628 |
<output>
|
| 629 |
+
<port id="5" precision="I32">
|
| 630 |
+
<dim>-1</dim>
|
| 631 |
+
<dim>-1</dim>
|
| 632 |
+
</port>
|
| 633 |
+
<port id="6" precision="BOOL">
|
| 634 |
<dim>-1</dim>
|
| 635 |
<dim>-1</dim>
|
| 636 |
</port>
|
| 637 |
</output>
|
| 638 |
</layer>
|
| 639 |
+
<layer id="43" name="Convert_282010" type="Convert" version="opset1">
|
| 640 |
+
<data destination_type="i32" />
|
| 641 |
+
<input>
|
| 642 |
+
<port id="0" precision="BOOL">
|
| 643 |
+
<dim>-1</dim>
|
| 644 |
+
<dim>-1</dim>
|
| 645 |
+
</port>
|
| 646 |
+
</input>
|
| 647 |
<output>
|
| 648 |
+
<port id="1" precision="I32">
|
| 649 |
+
<dim>-1</dim>
|
| 650 |
+
<dim>-1</dim>
|
| 651 |
</port>
|
| 652 |
</output>
|
| 653 |
</layer>
|
| 654 |
+
<layer id="44" name="Convert_282010" type="Convert" version="opset1">
|
| 655 |
+
<data destination_type="i64" />
|
| 656 |
<input>
|
| 657 |
<port id="0" precision="I32">
|
| 658 |
<dim>-1</dim>
|
| 659 |
<dim>-1</dim>
|
| 660 |
</port>
|
|
|
|
|
|
|
|
|
|
| 661 |
</input>
|
| 662 |
<output>
|
| 663 |
+
<port id="1" precision="I64" names="attention_mask">
|
| 664 |
<dim>-1</dim>
|
| 665 |
<dim>-1</dim>
|
| 666 |
</port>
|
| 667 |
</output>
|
| 668 |
</layer>
|
| 669 |
+
<layer id="46" name="RaggedToDense_282009.0" type="Convert" version="opset1">
|
| 670 |
<data destination_type="i64" />
|
| 671 |
<input>
|
| 672 |
<port id="0" precision="I32">
|
|
|
|
| 681 |
</port>
|
| 682 |
</output>
|
| 683 |
</layer>
|
| 684 |
+
<layer id="47" name="Result_282013" type="Result" version="opset1">
|
| 685 |
<input>
|
| 686 |
<port id="0" precision="I64">
|
| 687 |
<dim>-1</dim>
|
|
|
|
| 689 |
</port>
|
| 690 |
</input>
|
| 691 |
</layer>
|
| 692 |
+
<layer id="45" name="Result_282015" type="Result" version="opset1">
|
| 693 |
<input>
|
| 694 |
<port id="0" precision="I64">
|
| 695 |
<dim>-1</dim>
|
|
|
|
| 699 |
</layer>
|
| 700 |
</layers>
|
| 701 |
<edges>
|
| 702 |
+
<edge from-layer="0" from-port="0" to-layer="2" to-port="0" />
|
| 703 |
+
<edge from-layer="1" from-port="0" to-layer="8" to-port="0" />
|
| 704 |
+
<edge from-layer="2" from-port="1" to-layer="3" to-port="0" />
|
| 705 |
+
<edge from-layer="2" from-port="3" to-layer="15" to-port="4" />
|
| 706 |
+
<edge from-layer="2" from-port="2" to-layer="15" to-port="3" />
|
| 707 |
+
<edge from-layer="2" from-port="1" to-layer="15" to-port="2" />
|
| 708 |
<edge from-layer="3" from-port="1" to-layer="6" to-port="0" />
|
| 709 |
+
<edge from-layer="4" from-port="0" to-layer="6" to-port="1" />
|
| 710 |
+
<edge from-layer="5" from-port="0" to-layer="6" to-port="2" />
|
| 711 |
+
<edge from-layer="6" from-port="3" to-layer="8" to-port="1" />
|
| 712 |
+
<edge from-layer="6" from-port="3" to-layer="11" to-port="0" />
|
| 713 |
+
<edge from-layer="7" from-port="0" to-layer="8" to-port="2" />
|
| 714 |
+
<edge from-layer="8" from-port="3" to-layer="15" to-port="0" />
|
| 715 |
+
<edge from-layer="9" from-port="0" to-layer="13" to-port="0" />
|
| 716 |
+
<edge from-layer="10" from-port="0" to-layer="11" to-port="1" />
|
| 717 |
+
<edge from-layer="11" from-port="2" to-layer="13" to-port="1" />
|
| 718 |
+
<edge from-layer="12" from-port="0" to-layer="13" to-port="2" />
|
| 719 |
+
<edge from-layer="13" from-port="3" to-layer="15" to-port="1" />
|
| 720 |
+
<edge from-layer="14" from-port="0" to-layer="15" to-port="5" />
|
| 721 |
+
<edge from-layer="15" from-port="9" to-layer="18" to-port="1" />
|
| 722 |
+
<edge from-layer="15" from-port="6" to-layer="31" to-port="0" />
|
| 723 |
+
<edge from-layer="15" from-port="7" to-layer="31" to-port="1" />
|
| 724 |
+
<edge from-layer="15" from-port="11" to-layer="18" to-port="3" />
|
| 725 |
+
<edge from-layer="15" from-port="10" to-layer="18" to-port="2" />
|
| 726 |
+
<edge from-layer="15" from-port="8" to-layer="18" to-port="0" />
|
| 727 |
+
<edge from-layer="16" from-port="0" to-layer="18" to-port="4" />
|
| 728 |
+
<edge from-layer="17" from-port="0" to-layer="18" to-port="5" />
|
| 729 |
+
<edge from-layer="18" from-port="6" to-layer="21" to-port="0" />
|
| 730 |
+
<edge from-layer="18" from-port="7" to-layer="21" to-port="1" />
|
| 731 |
+
<edge from-layer="18" from-port="8" to-layer="21" to-port="2" />
|
| 732 |
+
<edge from-layer="18" from-port="9" to-layer="21" to-port="3" />
|
| 733 |
+
<edge from-layer="19" from-port="0" to-layer="21" to-port="4" />
|
| 734 |
+
<edge from-layer="20" from-port="0" to-layer="21" to-port="5" />
|
| 735 |
+
<edge from-layer="21" from-port="8" to-layer="31" to-port="4" />
|
| 736 |
+
<edge from-layer="21" from-port="7" to-layer="31" to-port="3" />
|
| 737 |
+
<edge from-layer="21" from-port="6" to-layer="31" to-port="2" />
|
| 738 |
+
<edge from-layer="22" from-port="0" to-layer="23" to-port="0" />
|
| 739 |
+
<edge from-layer="23" from-port="1" to-layer="31" to-port="5" />
|
| 740 |
+
<edge from-layer="23" from-port="2" to-layer="31" to-port="6" />
|
| 741 |
+
<edge from-layer="23" from-port="3" to-layer="31" to-port="7" />
|
| 742 |
+
<edge from-layer="24" from-port="0" to-layer="25" to-port="0" />
|
| 743 |
+
<edge from-layer="25" from-port="1" to-layer="31" to-port="8" />
|
| 744 |
+
<edge from-layer="25" from-port="2" to-layer="31" to-port="9" />
|
| 745 |
+
<edge from-layer="25" from-port="3" to-layer="31" to-port="10" />
|
| 746 |
+
<edge from-layer="26" from-port="0" to-layer="27" to-port="0" />
|
| 747 |
+
<edge from-layer="27" from-port="3" to-layer="31" to-port="13" />
|
| 748 |
+
<edge from-layer="27" from-port="2" to-layer="31" to-port="12" />
|
| 749 |
+
<edge from-layer="27" from-port="1" to-layer="31" to-port="11" />
|
| 750 |
+
<edge from-layer="28" from-port="0" to-layer="29" to-port="0" />
|
| 751 |
+
<edge from-layer="29" from-port="1" to-layer="31" to-port="14" />
|
| 752 |
+
<edge from-layer="29" from-port="2" to-layer="31" to-port="15" />
|
| 753 |
+
<edge from-layer="29" from-port="3" to-layer="31" to-port="16" />
|
| 754 |
+
<edge from-layer="30" from-port="0" to-layer="31" to-port="17" />
|
| 755 |
+
<edge from-layer="31" from-port="19" to-layer="32" to-port="0" />
|
| 756 |
+
<edge from-layer="31" from-port="18" to-layer="32" to-port="1" />
|
| 757 |
+
<edge from-layer="31" from-port="19" to-layer="35" to-port="0" />
|
| 758 |
+
<edge from-layer="31" from-port="20" to-layer="37" to-port="2" />
|
| 759 |
+
<edge from-layer="31" from-port="19" to-layer="37" to-port="1" />
|
| 760 |
+
<edge from-layer="32" from-port="2" to-layer="34" to-port="0" />
|
| 761 |
+
<edge from-layer="33" from-port="0" to-layer="34" to-port="1" />
|
| 762 |
+
<edge from-layer="34" from-port="2" to-layer="35" to-port="1" />
|
| 763 |
+
<edge from-layer="35" from-port="2" to-layer="37" to-port="0" />
|
| 764 |
+
<edge from-layer="36" from-port="0" to-layer="37" to-port="3" />
|
| 765 |
+
<edge from-layer="37" from-port="5" to-layer="42" to-port="1" />
|
| 766 |
+
<edge from-layer="37" from-port="6" to-layer="42" to-port="2" />
|
| 767 |
+
<edge from-layer="37" from-port="4" to-layer="42" to-port="0" />
|
| 768 |
+
<edge from-layer="37" from-port="4" to-layer="38" to-port="1" />
|
| 769 |
+
<edge from-layer="37" from-port="5" to-layer="38" to-port="0" />
|
| 770 |
+
<edge from-layer="38" from-port="2" to-layer="40" to-port="0" />
|
| 771 |
+
<edge from-layer="39" from-port="0" to-layer="40" to-port="1" />
|
| 772 |
+
<edge from-layer="40" from-port="2" to-layer="42" to-port="3" />
|
| 773 |
+
<edge from-layer="41" from-port="0" to-layer="42" to-port="4" />
|
| 774 |
+
<edge from-layer="42" from-port="6" to-layer="43" to-port="0" />
|
| 775 |
+
<edge from-layer="42" from-port="5" to-layer="46" to-port="0" />
|
| 776 |
+
<edge from-layer="43" from-port="1" to-layer="44" to-port="0" />
|
| 777 |
+
<edge from-layer="44" from-port="1" to-layer="45" to-port="0" />
|
| 778 |
+
<edge from-layer="46" from-port="1" to-layer="47" to-port="0" />
|
| 779 |
</edges>
|
| 780 |
<rt_info>
|
| 781 |
<bos_token_id value="1" />
|
tokenizer.json
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|