frozenc commited on
Commit
42899a2
·
verified ·
1 Parent(s): ab920de

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,3 +1,106 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ### Ops-MM-embedding-v1-2B
2
+
3
+ **Ops-MM-embedding-v1-2B** is a dense, large-scale multimodal embedding model developed and open-sourced by the Alibaba Cloud OpenSearch-AI team, fine-tuned from Qwen2-VL.
4
+
5
+ ---
6
+
7
+ ### **Key Features**
8
+
9
+ #### Unified Multimodal Embeddings
10
+ - Encodes text, images, text-image pairs, visual documents, and videos (by treating video frames as multiple image inputs) into a unified embedding space for cross-modal retrieval.
11
+
12
+ #### High Performance on MMEB
13
+ - Achieves **SOTA results** among models of similar scale on **MMEB-V2** and **MMEB-Image** benchmark (until 2025-07-03).
14
+
15
+ #### Multilingual Capabilities
16
+ - The larger variant (**Ops-MM-embedding-v1-7B**) achieves SOTA performance among dense models on the ViDoRe-v2 benchmark, demonstrating strong cross-lingual generalization.
17
+
18
+
19
+
20
+ ### Training data
21
+
22
+ MMEB-train, CC-3M, colpali training set.
23
+
24
+
25
+ ### Performance
26
+
27
+ #### MMEB-V2
28
+
29
+ | Model | Model Size (B) | Overall | Image-Overall | Video-Overall | Visdoc-Overall |
30
+ | ------------------------ | -------------- | ------- | ------------- | ------------- | -------------- |
31
+ | seed-1.6-embedding | unknown | 71.57 | 77.78 | 55.34 | 74.41 |
32
+ | Ops-MM-embedding-v1-7B | 8.29 | 67.79 | 72.72 | 53.76 | 70.91 |
33
+ | Ops-MM-embedding-v1-2B | 2.21 | 63.62 | 69.03 | 47.56 | 67.55 |
34
+ | VLM2Vec-V2.0-Qwen2VL-2B | 2.21 | 58.39 | 64.85 | 34.85 | 66.34 |
35
+ | gme-Qwen2-VL-2B-Instruct | 2.21 | 54.37 | 51.89 | 33.86 | 73.47 |
36
+
37
+ ---
38
+
39
+ #### MMEB-Image
40
+
41
+ The table below compares performance on MMEB-Image benchmark among models of similar size.
42
+
43
+ | Model | Model Size (B) | Image-Overall | I-CLS | I-QA | I-RET | I-VG |
44
+ | ---------------------- | -------------- | ------------- | ----- | ----- | ----- | ----- |
45
+ | Ops-MM-embedding-v1-2B | 2.21 | **69.03** | 68.07 | 65.11 | 69.17 | 80.85 |
46
+ | B3_Qwen2_2B | 2.21 | 68.1 | 67 | 61.19 | 70.85 | 79.88 |
47
+ | LLaVE-2B | 1.95 | 65.2 | 62.1 | 60.2 | 65.2 | 84.9 |
48
+
49
+ ---
50
+
51
+ #### ViDoRe-v2
52
+
53
+ | Model | Avg | ESG Restaurant Human | MIT Bio | Econ. Macro | ESG Restaurant Synth. | MIT Bio Multi. | Econ Macro Multi. | ESG Restaurant Synth. Multi. |
54
+ | ---------------------- | -------- | -------------------- | ------- | ----------- | --------------------- | -------------- | ----------------- | ---------------------------- |
55
+ | gme-7B | 59.3 | 65.8 | 64 | 62.9 | 54.3 | 55.1 | 56.2 | 56.7 |
56
+ | seed 1.6 embedding | 58.9 | 63.3 | 63.9 | 64.0 | 58.4 | 57.1 | 53.8 | 52.0 |
57
+ | Ops-MM-embedding-v1-7B | **60.6** | 66.3 | 58.4 | 67.4 | 60.0 | 54.3 | 60.9 | 56.8 |
58
+ | Ops-MM-embedding-v1-2B | 54.4 | 58.6 | 56.0 | 56.4 | 55.8 | 52.9 | 47.9 | 53.4 |
59
+
60
+
61
+
62
+
63
+ ## Usage
64
+
65
+ ```python
66
+ from ops_mm_embedding_v1 import OpsMMEmbeddingV1, fetch_image
67
+
68
+
69
+ model = OpsMMEmbeddingV1(
70
+ "OpenSearch-AI/Ops-MM-embedding-v1-2B",
71
+ device="cuda",
72
+ attn_implementation="flash_attention_2"
73
+ )
74
+
75
+ t2i_prompt = "Find an image that matches the given text."
76
+ texts = [
77
+ "The Tesla Cybertruck is a battery electric pickup truck built by Tesla, Inc. since 2023.",
78
+ "Alibaba office.",
79
+ "Alibaba office.",
80
+ ]
81
+ images = [
82
+ "https://upload.wikimedia.org/wikipedia/commons/e/e9/Tesla_Cybertruck_damaged_window.jpg",
83
+ "https://upload.wikimedia.org/wikipedia/commons/e/e0/TaobaoCity_Alibaba_Xixi_Park.jpg",
84
+ "https://upload.wikimedia.org/wikipedia/commons/thumb/b/b0/Alibaba_Binjiang_Park.jpg/1024px-Alibaba_Binjiang_Park.jpg"
85
+ ]
86
+
87
+ images = [fetch_image(image) for image in images]
88
+
89
+ # Text and image embedding
90
+ text_embeddings = model.get_text_embeddings(texts)
91
+ image_embeddings = model.get_image_embeddings(images)
92
+ print('Text and image embeddings', (text_embeddings @ image_embeddings.T).tolist())
93
+
94
+ # Fused Embedding
95
+ text_with_image_embeddings = model.get_fused_embeddings(texts=texts, images=images, instruction=t2i_prompt)
96
+ print('Text and image embeddings', (text_embeddings @ image_embeddings.T).tolist())
97
+
98
+ # Multi-image embeddings
99
+ multi_images = [
100
+ [images[0]],
101
+ [images[1], images[2]],
102
+ ]
103
+ multi_image_embeddings = model.get_image_embeddings(multi_images)
104
+ print('Multi-image embeddings', (multi_image_embeddings @ multi_image_embeddings.T).tolist())
105
+
106
+ ```
added_tokens.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "<|box_end|>": 151649,
3
+ "<|box_start|>": 151648,
4
+ "<|endoftext|>": 151643,
5
+ "<|im_end|>": 151645,
6
+ "<|im_start|>": 151644,
7
+ "<|image_pad|>": 151655,
8
+ "<|object_ref_end|>": 151647,
9
+ "<|object_ref_start|>": 151646,
10
+ "<|quad_end|>": 151651,
11
+ "<|quad_start|>": 151650,
12
+ "<|video_pad|>": 151656,
13
+ "<|vision_end|>": 151653,
14
+ "<|vision_pad|>": 151654,
15
+ "<|vision_start|>": 151652
16
+ }
chat_template.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}"
3
+ }
config.json ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Qwen2VLForConditionalGeneration"
4
+ ],
5
+ "attention_dropout": 0.0,
6
+ "bos_token_id": 151643,
7
+ "eos_token_id": 151645,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 1536,
10
+ "image_token_id": 151655,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 8960,
13
+ "max_position_embeddings": 32768,
14
+ "max_window_layers": 28,
15
+ "model_type": "qwen2_vl",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 28,
18
+ "num_key_value_heads": 2,
19
+ "rms_norm_eps": 1e-06,
20
+ "rope_scaling": {
21
+ "mrope_section": [
22
+ 16,
23
+ 24,
24
+ 24
25
+ ],
26
+ "rope_type": "default",
27
+ "type": "default"
28
+ },
29
+ "rope_theta": 1000000.0,
30
+ "sliding_window": 32768,
31
+ "tie_word_embeddings": true,
32
+ "torch_dtype": "bfloat16",
33
+ "transformers_version": "4.51.1",
34
+ "use_cache": true,
35
+ "use_sliding_window": false,
36
+ "video_token_id": 151656,
37
+ "vision_config": {
38
+ "depth": 32,
39
+ "embed_dim": 1280,
40
+ "hidden_act": "quick_gelu",
41
+ "hidden_size": 1536,
42
+ "in_channels": 3,
43
+ "in_chans": 3,
44
+ "mlp_ratio": 4,
45
+ "model_type": "qwen2_vl",
46
+ "num_heads": 16,
47
+ "patch_size": 14,
48
+ "spatial_merge_size": 2,
49
+ "spatial_patch_size": 14,
50
+ "temporal_patch_size": 2
51
+ },
52
+ "vision_end_token_id": 151653,
53
+ "vision_start_token_id": 151652,
54
+ "vision_token_id": 151654,
55
+ "vocab_size": 151936
56
+ }
demo.py ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from ops_mm_embedding_v1 import OpsMMEmbeddingV1, fetch_image
2
+
3
+
4
+ model = OpsMMEmbeddingV1(
5
+ "OpenSearch-AI/Ops-MM-embedding-v1-2B",
6
+ device="cuda",
7
+ attn_implementation="flash_attention_2"
8
+ )
9
+
10
+ t2i_prompt = "Find an image that matches the given text."
11
+ texts = [
12
+ "The Tesla Cybertruck is a battery electric pickup truck built by Tesla, Inc. since 2023.",
13
+ "Alibaba office.",
14
+ "Alibaba office.",
15
+ ]
16
+ images = [
17
+ "https://upload.wikimedia.org/wikipedia/commons/e/e9/Tesla_Cybertruck_damaged_window.jpg",
18
+ "https://upload.wikimedia.org/wikipedia/commons/e/e0/TaobaoCity_Alibaba_Xixi_Park.jpg",
19
+ "https://upload.wikimedia.org/wikipedia/commons/thumb/b/b0/Alibaba_Binjiang_Park.jpg/1024px-Alibaba_Binjiang_Park.jpg"
20
+ ]
21
+
22
+ images = [fetch_image(image) for image in images]
23
+
24
+ # Text and image embedding
25
+ text_embeddings = model.get_text_embeddings(texts)
26
+ image_embeddings = model.get_image_embeddings(images)
27
+ print('Text and image embeddings', (text_embeddings @ image_embeddings.T).tolist())
28
+
29
+ # Fused Embedding
30
+ text_with_image_embeddings = model.get_fused_embeddings(texts=texts, images=images, instruction=t2i_prompt)
31
+ print('Text and image embeddings', (text_embeddings @ image_embeddings.T).tolist())
32
+
33
+ # Multi-image embeddings
34
+ multi_images = [
35
+ [images[0]],
36
+ [images[1], images[2]],
37
+ ]
38
+ multi_image_embeddings = model.get_image_embeddings(multi_images)
39
+ print('Multi-image embeddings', (multi_image_embeddings @ multi_image_embeddings.T).tolist())
generation_config.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "temperature": 0.01,
10
+ "top_k": 1,
11
+ "top_p": 0.001,
12
+ "transformers_version": "4.51.1"
13
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6a94699edc3bfe4d03f7cd060b5fe9b153cbe45e810cf09ef52a15d2ea92a61f
3
+ size 4418050848
ops_mm_embedding_v1.py ADDED
@@ -0,0 +1,309 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ from typing import List, Optional, TypeAlias, Union
3
+
4
+ import torch
5
+ import torch.nn as nn
6
+ from PIL import Image
7
+ from tqdm import tqdm
8
+ from transformers import AutoModelForImageTextToText, AutoProcessor
9
+
10
+ ImageInput: TypeAlias = Union[Image.Image, List[Image.Image]]
11
+ BatchImageInput: TypeAlias = Union[List[Image.Image], List[List[Image.Image]]]
12
+
13
+
14
+ class OpsMMEmbeddingV1(nn.Module):
15
+ def __init__(
16
+ self,
17
+ model_name: str,
18
+ device: str = "cuda",
19
+ max_length: Optional[int] = None,
20
+ attn_implementation: Optional[str] = None,
21
+ ):
22
+ super().__init__()
23
+ self.device = device
24
+ self.max_length = max_length
25
+ self.default_instruction = "You are a helpful assistant."
26
+ self.base_model = AutoModelForImageTextToText.from_pretrained(
27
+ model_name,
28
+ torch_dtype=torch.bfloat16,
29
+ low_cpu_mem_usage=True,
30
+ attn_implementation=attn_implementation,
31
+ ).to(self.device)
32
+
33
+ self.processor = AutoProcessor.from_pretrained(model_name, min_pixels=256 * 28 * 28, max_pixels=1280 * 28 * 28)
34
+ self.processor.tokenizer.padding_side = "left"
35
+ self.eval()
36
+
37
+ def encode_input(self, input):
38
+ hidden_states = self.base_model(**input, return_dict=True, output_hidden_states=True)
39
+ hidden_states = hidden_states.hidden_states[-1]
40
+ pooled_output = self._pooling(hidden_states)
41
+ return pooled_output
42
+
43
+ def _pooling(self, last_hidden_state):
44
+ batch_size = last_hidden_state.shape[0]
45
+ reps = last_hidden_state[torch.arange(batch_size), -1, :]
46
+ reps = torch.nn.functional.normalize(reps, p=2, dim=-1)
47
+ return reps
48
+
49
+ def _validate_instructions(
50
+ self,
51
+ texts: Optional[List[str]],
52
+ images: Optional[BatchImageInput],
53
+ instruction: Optional[Union[str, List[str]]],
54
+ ) -> List[str]:
55
+ """Validate and format instructions to match batch size"""
56
+ batch_size = max(len(x) if x is not None else 0 for x in [texts, images])
57
+
58
+ if instruction is None:
59
+ return [self.default_instruction] * batch_size
60
+
61
+ if isinstance(instruction, str):
62
+ return [instruction] * batch_size
63
+
64
+ if isinstance(instruction, list):
65
+ if len(instruction) != batch_size:
66
+ raise ValueError(f"Length of instruction list ({len(instruction)}) must match batch size ({batch_size}) when texts/images are provided")
67
+ return instruction
68
+
69
+ raise TypeError("instruction must be str, List[str] or None")
70
+
71
+ def _process_images(self, images: ImageInput) -> List[Image.Image]:
72
+ """Convert single image or list of images to processed format"""
73
+ if isinstance(images, Image.Image) or isinstance(images, str):
74
+ return [fetch_image(images)]
75
+ return [fetch_image(i) for i in images]
76
+
77
+ def embed(
78
+ self,
79
+ texts: Optional[List[str]] = None,
80
+ images: Optional[BatchImageInput] = None,
81
+ instruction: Optional[Union[str, List[str]]] = None,
82
+ **kwargs,
83
+ ) -> torch.Tensor:
84
+ """Generate embeddings for text, images, or combined inputs.
85
+
86
+ Args:
87
+ texts: List of text inputs (optional)
88
+ images: Can be:
89
+ - List[Image.Image]: Single image per input
90
+ - List[List[Image.Image]]: Multiple images per input
91
+ instruction: Instruction(s) for the model. Can be:
92
+ - None: use default instruction
93
+ - str: use same instruction for all inputs
94
+ - List[str]: per-input instructions (must match batch size)
95
+ """
96
+ if texts is None and images is None:
97
+ raise ValueError("Either texts or images must be provided")
98
+
99
+ instructions = self._validate_instructions(texts, images, instruction)
100
+
101
+ # Determine batch size
102
+ batch_size = len(texts) if texts is not None else len(images) # type: ignore
103
+
104
+ input_texts, input_images = [], []
105
+ for i in range(batch_size):
106
+ text = texts[i] if texts is not None else None
107
+ image = images[i] if images is not None else None
108
+
109
+ input_str = ""
110
+ processed_image = None
111
+ if image is not None:
112
+ processed_image = self._process_images(image)
113
+ input_str += "<|vision_start|><|image_pad|><|vision_end|>" * len(processed_image)
114
+
115
+ if text is not None:
116
+ input_str += text
117
+
118
+ msg = f"<|im_start|>system\n{instructions[i]}<|im_end|>\n<|im_start|>user\n{input_str}<|im_end|>\n<|im_start|>assistant\n<|endoftext|>"
119
+
120
+ input_texts.append(msg)
121
+ input_images.append(processed_image)
122
+
123
+ # Only pass to processor if we actually have images
124
+ processed_images = input_images if any(img is not None for img in input_images) else None
125
+
126
+ inputs = self.processor(
127
+ text=input_texts,
128
+ images=processed_images,
129
+ padding=True,
130
+ truncation=True,
131
+ max_length=self.max_length,
132
+ return_tensors="pt",
133
+ )
134
+ inputs = {k: v.to(self.device) for k, v in inputs.items()}
135
+
136
+ with torch.inference_mode():
137
+ embeddings = self.encode_input(inputs)
138
+
139
+ return embeddings
140
+
141
+ def get_text_embeddings(
142
+ self,
143
+ texts: List[str],
144
+ instruction: Optional[Union[str, List[str]]] = None,
145
+ **kwargs,
146
+ ) -> torch.Tensor:
147
+ """Convenience method for text-only embeddings"""
148
+ return self.get_fused_embeddings(texts=texts, instruction=instruction, **kwargs)
149
+
150
+ def get_image_embeddings(
151
+ self,
152
+ images: BatchImageInput,
153
+ instruction: Optional[Union[str, List[str]]] = None,
154
+ **kwargs,
155
+ ) -> torch.Tensor:
156
+ """Convenience method for image-only embeddings.
157
+
158
+ Args:
159
+ images: Can be:
160
+ - List[Image.Image]: Single image per input
161
+ - List[List[Image.Image]]: Multiple images per input
162
+ """
163
+ return self.get_fused_embeddings(images=images, instruction=instruction, **kwargs)
164
+
165
+ def get_fused_embeddings(
166
+ self,
167
+ texts: Optional[List[str]] = None,
168
+ images: Optional[BatchImageInput] = None,
169
+ instruction: Optional[Union[str, List[str]]] = None,
170
+ batch_size: int = 8,
171
+ show_progress: bool = True,
172
+ **kwargs,
173
+ ) -> torch.Tensor:
174
+ """Batch processing for large collections of texts/images.
175
+
176
+ Args:
177
+ texts: List of text inputs (optional)
178
+ images: Can be:
179
+ - List[Image.Image]: Single image per input
180
+ - List[List[Image.Image]]: Multiple images per input
181
+ instruction: Instruction(s) for the model
182
+ batch_size: Number of items to process at once
183
+ show_progress: Whether to display progress bar
184
+ """
185
+
186
+ if texts is None and images is None:
187
+ raise ValueError("Either texts or images must be provided")
188
+
189
+ total_items = len(texts) if texts is not None else len(images) # type: ignore
190
+ num_batches = math.ceil(total_items / batch_size)
191
+
192
+ all_embeddings = []
193
+ progress = tqdm(total=num_batches, disable=not show_progress, desc="Processing")
194
+
195
+ for i in range(0, total_items, batch_size):
196
+ batch_texts = texts[i : i + batch_size] if texts is not None else None
197
+ batch_images = images[i : i + batch_size] if images is not None else None
198
+ batch_emb = self.embed(texts=batch_texts, images=batch_images, instruction=instruction)
199
+
200
+ all_embeddings.append(batch_emb.cpu())
201
+ progress.update(1)
202
+
203
+ progress.close()
204
+ return torch.cat(all_embeddings, dim=0).to(self.device)
205
+
206
+ def forward(self, **inputs) -> torch.Tensor:
207
+ """Alias for encode_input"""
208
+ return self.encode_input(inputs)
209
+
210
+
211
+ ### Modified from qwen_vl_utils.vision_process.py
212
+ import base64
213
+ import logging
214
+ import math
215
+ from io import BytesIO
216
+
217
+ import requests
218
+
219
+ IMAGE_FACTOR = 28
220
+ MIN_PIXELS = 256 * 28 * 28
221
+ MAX_PIXELS = 1280 * 28 * 28
222
+ MAX_RATIO = 200
223
+
224
+
225
+ def round_by_factor(number: int, factor: int) -> int:
226
+ """Returns the closest integer to 'number' that is divisible by 'factor'."""
227
+ return round(number / factor) * factor
228
+
229
+
230
+ def ceil_by_factor(number: int | float, factor: int) -> int:
231
+ """Returns the smallest integer greater than or equal to 'number' that is divisible by 'factor'."""
232
+ return math.ceil(number / factor) * factor
233
+
234
+
235
+ def floor_by_factor(number: int | float, factor: int) -> int:
236
+ """Returns the largest integer less than or equal to 'number' that is divisible by 'factor'."""
237
+ return math.floor(number / factor) * factor
238
+
239
+
240
+ def smart_resize(
241
+ height: int,
242
+ width: int,
243
+ factor: int = IMAGE_FACTOR,
244
+ min_pixels: int = MIN_PIXELS,
245
+ max_pixels: int = MAX_PIXELS,
246
+ ) -> tuple[int, int]:
247
+ """
248
+ Rescales the image so that the following conditions are met:
249
+ 1. Both dimensions (height and width) are divisible by 'factor'.
250
+ 2. The total number of pixels is within the range ['min_pixels', 'max_pixels'].
251
+ 3. The aspect ratio of the image is maintained as closely as possible.
252
+ """
253
+ h_bar = max(factor, round_by_factor(height, factor))
254
+ w_bar = max(factor, round_by_factor(width, factor))
255
+ if h_bar * w_bar > max_pixels:
256
+ beta = math.sqrt((height * width) / max_pixels)
257
+ h_bar = floor_by_factor(height / beta, factor)
258
+ w_bar = floor_by_factor(width / beta, factor)
259
+ elif h_bar * w_bar < min_pixels:
260
+ beta = math.sqrt(min_pixels / (height * width))
261
+ h_bar = ceil_by_factor(height * beta, factor)
262
+ w_bar = ceil_by_factor(width * beta, factor)
263
+
264
+ if max(h_bar, w_bar) / min(h_bar, w_bar) > MAX_RATIO:
265
+ logging.warning(f"Absolute aspect ratio must be smaller than {MAX_RATIO}, got {max(h_bar, w_bar) / min(h_bar, w_bar)}")
266
+ if h_bar > w_bar:
267
+ h_bar = w_bar * MAX_RATIO
268
+ else:
269
+ w_bar = h_bar * MAX_RATIO
270
+ return h_bar, w_bar
271
+
272
+
273
+ def fetch_image(
274
+ image: str | Image.Image,
275
+ size_factor: int = IMAGE_FACTOR,
276
+ min_pixels: int = MIN_PIXELS,
277
+ max_pixels: int = MAX_PIXELS,
278
+ ) -> Image.Image:
279
+ image_obj = None
280
+ if isinstance(image, Image.Image):
281
+ image_obj = image
282
+ elif image.startswith("http://") or image.startswith("https://"):
283
+ image_obj = Image.open(requests.get(image, stream=True).raw) # type: ignore
284
+ elif image.startswith("file://"):
285
+ image_obj = Image.open(image[7:])
286
+ elif image.startswith("data:image"):
287
+ if "base64," in image:
288
+ _, base64_data = image.split("base64,", 1)
289
+ data = base64.b64decode(base64_data)
290
+ image_obj = Image.open(BytesIO(data))
291
+ else:
292
+ image_obj = Image.open(image)
293
+ if image_obj is None:
294
+ raise ValueError(f"Unrecognized image input, support local path, http url, base64 and PIL.Image, got {image}")
295
+ image = image_obj.convert("RGB")
296
+ width, height = image.size
297
+ resized_height, resized_width = smart_resize(
298
+ height,
299
+ width,
300
+ factor=size_factor,
301
+ min_pixels=min_pixels,
302
+ max_pixels=max_pixels,
303
+ )
304
+ image = image.resize((resized_width, resized_height))
305
+
306
+ return image
307
+
308
+
309
+ ###
preprocessor_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_convert_rgb": true,
3
+ "do_normalize": true,
4
+ "do_rescale": true,
5
+ "do_resize": true,
6
+ "image_mean": [
7
+ 0.48145466,
8
+ 0.4578275,
9
+ 0.40821073
10
+ ],
11
+ "image_processor_type": "Qwen2VLImageProcessor",
12
+ "image_std": [
13
+ 0.26862954,
14
+ 0.26130258,
15
+ 0.27577711
16
+ ],
17
+ "max_pixels": 12845056,
18
+ "merge_size": 2,
19
+ "min_pixels": 3136,
20
+ "patch_size": 14,
21
+ "processor_class": "Qwen2VLProcessor",
22
+ "resample": 3,
23
+ "rescale_factor": 0.00392156862745098,
24
+ "size": {
25
+ "longest_edge": 12845056,
26
+ "shortest_edge": 3136
27
+ },
28
+ "temporal_patch_size": 2
29
+ }
score/Ops-MM-embedding-v1-2B.json ADDED
@@ -0,0 +1,2289 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "model_name": "Ops-MM-embedding-v1-2B",
4
+ "model_backbone": "Qwen2-VL-2B",
5
+ "model_size": 2.21,
6
+ "embedding_dimension": 1536,
7
+ "max_length_tokens": null,
8
+ "model_release_date": "2025-07-03",
9
+ "data_source": "OpenSearch-AI",
10
+ "url": "https://huggingface.co/OpenSearch-AI/Ops-MM-embedding-v1-2B",
11
+ "report_generated_date": "2025-07-02T22:59:36.793912"
12
+ },
13
+ "metrics": {
14
+ "image": {
15
+ "ImageNet-1K": {
16
+ "hit@1": 0.811,
17
+ "hit@5": 0.961,
18
+ "hit@10": 0.982,
19
+ "ndcg_linear@1": 0.811,
20
+ "ndcg_linear@5": 0.8964826904887964,
21
+ "ndcg_linear@10": 0.9033237496484268,
22
+ "ndcg_exponential@1": 0.811,
23
+ "ndcg_exponential@5": 0.8964826904887964,
24
+ "ndcg_exponential@10": 0.9033237496484268,
25
+ "precision@1": 0.811,
26
+ "precision@5": 0.19220000000000004,
27
+ "precision@10": 0.09820000000000002,
28
+ "recall@1": 0.811,
29
+ "recall@5": 0.961,
30
+ "recall@10": 0.982,
31
+ "f1@1": 0.811,
32
+ "f1@5": 0.3203333333333333,
33
+ "f1@10": 0.17854545454545453,
34
+ "map@1": 0.811,
35
+ "map@5": 0.8745,
36
+ "map@10": 0.8773535714285714,
37
+ "mrr@1": 0.811,
38
+ "mrr@5": 0.8745,
39
+ "mrr@10": 0.8773535714285714,
40
+ "num_pred": 1000,
41
+ "num_data": 1000
42
+ },
43
+ "N24News": {
44
+ "hit@1": 0.784,
45
+ "hit@5": 0.977,
46
+ "hit@10": 0.994,
47
+ "ndcg_linear@1": 0.784,
48
+ "ndcg_linear@5": 0.8930799148461822,
49
+ "ndcg_linear@10": 0.8985800069685335,
50
+ "ndcg_exponential@1": 0.784,
51
+ "ndcg_exponential@5": 0.8930799148461822,
52
+ "ndcg_exponential@10": 0.8985800069685335,
53
+ "precision@1": 0.784,
54
+ "precision@5": 0.19540000000000005,
55
+ "precision@10": 0.0994,
56
+ "recall@1": 0.784,
57
+ "recall@5": 0.977,
58
+ "recall@10": 0.994,
59
+ "f1@1": 0.784,
60
+ "f1@5": 0.3256666666666666,
61
+ "f1@10": 0.18072727272727268,
62
+ "map@1": 0.784,
63
+ "map@5": 0.8645333333333333,
64
+ "map@10": 0.866809126984127,
65
+ "mrr@1": 0.784,
66
+ "mrr@5": 0.8645333333333333,
67
+ "mrr@10": 0.866809126984127,
68
+ "num_pred": 1000,
69
+ "num_data": 1000
70
+ },
71
+ "HatefulMemes": {
72
+ "hit@1": 0.74,
73
+ "hit@5": 1.0,
74
+ "hit@10": 1.0,
75
+ "ndcg_linear@1": 0.74,
76
+ "ndcg_linear@5": 0.904041735928579,
77
+ "ndcg_linear@10": 0.904041735928579,
78
+ "ndcg_exponential@1": 0.74,
79
+ "ndcg_exponential@5": 0.904041735928579,
80
+ "ndcg_exponential@10": 0.904041735928579,
81
+ "precision@1": 0.74,
82
+ "precision@5": 0.20000000000000004,
83
+ "precision@10": 0.10000000000000002,
84
+ "recall@1": 0.74,
85
+ "recall@5": 1.0,
86
+ "recall@10": 1.0,
87
+ "f1@1": 0.74,
88
+ "f1@5": 0.3333333333333333,
89
+ "f1@10": 0.18181818181818182,
90
+ "map@1": 0.74,
91
+ "map@5": 0.87,
92
+ "map@10": 0.87,
93
+ "mrr@1": 0.74,
94
+ "mrr@5": 0.87,
95
+ "mrr@10": 0.87,
96
+ "num_pred": 1000,
97
+ "num_data": 1000
98
+ },
99
+ "VOC2007": {
100
+ "hit@1": 0.813,
101
+ "hit@5": 0.971,
102
+ "hit@10": 0.99,
103
+ "ndcg_linear@1": 0.813,
104
+ "ndcg_linear@5": 0.9042203424068372,
105
+ "ndcg_linear@10": 0.9105359793935004,
106
+ "ndcg_exponential@1": 0.813,
107
+ "ndcg_exponential@5": 0.9042203424068372,
108
+ "ndcg_exponential@10": 0.9105359793935004,
109
+ "precision@1": 0.813,
110
+ "precision@5": 0.19420000000000004,
111
+ "precision@10": 0.09900000000000002,
112
+ "recall@1": 0.813,
113
+ "recall@5": 0.971,
114
+ "recall@10": 0.99,
115
+ "f1@1": 0.813,
116
+ "f1@5": 0.3236666666666666,
117
+ "f1@10": 0.18,
118
+ "map@1": 0.813,
119
+ "map@5": 0.8814000000000001,
120
+ "map@10": 0.8841063492063492,
121
+ "mrr@1": 0.813,
122
+ "mrr@5": 0.8814000000000001,
123
+ "mrr@10": 0.8841063492063492,
124
+ "num_pred": 1000,
125
+ "num_data": 1000
126
+ },
127
+ "SUN397": {
128
+ "hit@1": 0.807,
129
+ "hit@5": 0.98,
130
+ "hit@10": 0.991,
131
+ "ndcg_linear@1": 0.807,
132
+ "ndcg_linear@5": 0.9053304429453105,
133
+ "ndcg_linear@10": 0.9090085996069652,
134
+ "ndcg_exponential@1": 0.807,
135
+ "ndcg_exponential@5": 0.9053304429453105,
136
+ "ndcg_exponential@10": 0.9090085996069652,
137
+ "precision@1": 0.807,
138
+ "precision@5": 0.19600000000000006,
139
+ "precision@10": 0.09910000000000002,
140
+ "recall@1": 0.807,
141
+ "recall@5": 0.98,
142
+ "recall@10": 0.991,
143
+ "f1@1": 0.807,
144
+ "f1@5": 0.3266666666666666,
145
+ "f1@10": 0.18018181818181817,
146
+ "map@1": 0.807,
147
+ "map@5": 0.8799166666666667,
148
+ "map@10": 0.8815047619047619,
149
+ "mrr@1": 0.807,
150
+ "mrr@5": 0.8799166666666667,
151
+ "mrr@10": 0.8815047619047619,
152
+ "num_pred": 1000,
153
+ "num_data": 1000
154
+ },
155
+ "Place365": {
156
+ "hit@1": 0.439,
157
+ "hit@5": 0.738,
158
+ "hit@10": 0.815,
159
+ "ndcg_linear@1": 0.439,
160
+ "ndcg_linear@5": 0.601791445742296,
161
+ "ndcg_linear@10": 0.6269267599806451,
162
+ "ndcg_exponential@1": 0.439,
163
+ "ndcg_exponential@5": 0.601791445742296,
164
+ "ndcg_exponential@10": 0.6269267599806451,
165
+ "precision@1": 0.439,
166
+ "precision@5": 0.14759999999999998,
167
+ "precision@10": 0.0815,
168
+ "recall@1": 0.439,
169
+ "recall@5": 0.738,
170
+ "recall@10": 0.815,
171
+ "f1@1": 0.439,
172
+ "f1@5": 0.24600000000000005,
173
+ "f1@10": 0.1481818181818182,
174
+ "map@1": 0.439,
175
+ "map@5": 0.5561666666666666,
176
+ "map@10": 0.5666761904761904,
177
+ "mrr@1": 0.439,
178
+ "mrr@5": 0.5561666666666666,
179
+ "mrr@10": 0.5666761904761904,
180
+ "num_pred": 1000,
181
+ "num_data": 1000
182
+ },
183
+ "ImageNet-A": {
184
+ "hit@1": 0.531,
185
+ "hit@5": 0.785,
186
+ "hit@10": 0.846,
187
+ "ndcg_linear@1": 0.531,
188
+ "ndcg_linear@5": 0.6706099804071457,
189
+ "ndcg_linear@10": 0.6904167945995113,
190
+ "ndcg_exponential@1": 0.531,
191
+ "ndcg_exponential@5": 0.6706099804071457,
192
+ "ndcg_exponential@10": 0.6904167945995113,
193
+ "precision@1": 0.531,
194
+ "precision@5": 0.157,
195
+ "precision@10": 0.08460000000000001,
196
+ "recall@1": 0.531,
197
+ "recall@5": 0.785,
198
+ "recall@10": 0.846,
199
+ "f1@1": 0.531,
200
+ "f1@5": 0.26166666666666677,
201
+ "f1@10": 0.15381818181818183,
202
+ "map@1": 0.531,
203
+ "map@5": 0.63205,
204
+ "map@10": 0.6402698412698412,
205
+ "mrr@1": 0.531,
206
+ "mrr@5": 0.63205,
207
+ "mrr@10": 0.6402698412698412,
208
+ "num_pred": 1000,
209
+ "num_data": 1000
210
+ },
211
+ "ImageNet-R": {
212
+ "hit@1": 0.912,
213
+ "hit@5": 0.981,
214
+ "hit@10": 0.99,
215
+ "ndcg_linear@1": 0.912,
216
+ "ndcg_linear@5": 0.9506606903944571,
217
+ "ndcg_linear@10": 0.9535702649792099,
218
+ "ndcg_exponential@1": 0.912,
219
+ "ndcg_exponential@5": 0.9506606903944571,
220
+ "ndcg_exponential@10": 0.9535702649792099,
221
+ "precision@1": 0.912,
222
+ "precision@5": 0.19620000000000004,
223
+ "precision@10": 0.09900000000000002,
224
+ "recall@1": 0.912,
225
+ "recall@5": 0.981,
226
+ "recall@10": 0.99,
227
+ "f1@1": 0.912,
228
+ "f1@5": 0.327,
229
+ "f1@10": 0.18,
230
+ "map@1": 0.912,
231
+ "map@5": 0.9403833333333333,
232
+ "map@10": 0.9415845238095237,
233
+ "mrr@1": 0.912,
234
+ "mrr@5": 0.9403833333333333,
235
+ "mrr@10": 0.9415845238095237,
236
+ "num_pred": 1000,
237
+ "num_data": 1000
238
+ },
239
+ "ObjectNet": {
240
+ "hit@1": 0.684,
241
+ "hit@5": 0.874,
242
+ "hit@10": 0.911,
243
+ "ndcg_linear@1": 0.684,
244
+ "ndcg_linear@5": 0.7906497791119159,
245
+ "ndcg_linear@10": 0.8028127610985015,
246
+ "ndcg_exponential@1": 0.684,
247
+ "ndcg_exponential@5": 0.7906497791119159,
248
+ "ndcg_exponential@10": 0.8028127610985015,
249
+ "precision@1": 0.684,
250
+ "precision@5": 0.1748,
251
+ "precision@10": 0.0911,
252
+ "recall@1": 0.684,
253
+ "recall@5": 0.874,
254
+ "recall@10": 0.911,
255
+ "f1@1": 0.684,
256
+ "f1@5": 0.29133333333333333,
257
+ "f1@10": 0.16563636363636364,
258
+ "map@1": 0.684,
259
+ "map@5": 0.7624166666666667,
260
+ "map@10": 0.7675519841269842,
261
+ "mrr@1": 0.684,
262
+ "mrr@5": 0.7624166666666667,
263
+ "mrr@10": 0.7675519841269842,
264
+ "num_pred": 1000,
265
+ "num_data": 1000
266
+ },
267
+ "Country211": {
268
+ "hit@1": 0.286,
269
+ "hit@5": 0.494,
270
+ "hit@10": 0.6,
271
+ "ndcg_linear@1": 0.286,
272
+ "ndcg_linear@5": 0.3961926672546998,
273
+ "ndcg_linear@10": 0.43102042795581663,
274
+ "ndcg_exponential@1": 0.286,
275
+ "ndcg_exponential@5": 0.3961926672546998,
276
+ "ndcg_exponential@10": 0.43102042795581663,
277
+ "precision@1": 0.286,
278
+ "precision@5": 0.0988,
279
+ "precision@10": 0.06,
280
+ "recall@1": 0.286,
281
+ "recall@5": 0.494,
282
+ "recall@10": 0.6,
283
+ "f1@1": 0.286,
284
+ "f1@5": 0.1646666666666667,
285
+ "f1@10": 0.10909090909090913,
286
+ "map@1": 0.286,
287
+ "map@5": 0.3636833333333333,
288
+ "map@10": 0.37838095238095243,
289
+ "mrr@1": 0.286,
290
+ "mrr@5": 0.3636833333333333,
291
+ "mrr@10": 0.37838095238095243,
292
+ "num_pred": 1000,
293
+ "num_data": 1000
294
+ },
295
+ "OK-VQA": {
296
+ "hit@1": 0.641,
297
+ "hit@5": 0.893,
298
+ "hit@10": 0.941,
299
+ "ndcg_linear@1": 0.641,
300
+ "ndcg_linear@5": 0.7797349998317328,
301
+ "ndcg_linear@10": 0.7952131287355804,
302
+ "ndcg_exponential@1": 0.641,
303
+ "ndcg_exponential@5": 0.7797349998317328,
304
+ "ndcg_exponential@10": 0.7952131287355804,
305
+ "precision@1": 0.641,
306
+ "precision@5": 0.17860000000000004,
307
+ "precision@10": 0.09410000000000002,
308
+ "recall@1": 0.641,
309
+ "recall@5": 0.893,
310
+ "recall@10": 0.941,
311
+ "f1@1": 0.641,
312
+ "f1@5": 0.2976666666666667,
313
+ "f1@10": 0.17109090909090907,
314
+ "map@1": 0.641,
315
+ "map@5": 0.7416,
316
+ "map@10": 0.7479642857142857,
317
+ "mrr@1": 0.641,
318
+ "mrr@5": 0.7416,
319
+ "mrr@10": 0.7479642857142857,
320
+ "num_pred": 1000,
321
+ "num_data": 1000
322
+ },
323
+ "A-OKVQA": {
324
+ "hit@1": 0.54,
325
+ "hit@5": 0.847,
326
+ "hit@10": 0.908,
327
+ "ndcg_linear@1": 0.54,
328
+ "ndcg_linear@5": 0.7083891854741314,
329
+ "ndcg_linear@10": 0.7286378657248158,
330
+ "ndcg_exponential@1": 0.54,
331
+ "ndcg_exponential@5": 0.7083891854741314,
332
+ "ndcg_exponential@10": 0.7286378657248158,
333
+ "precision@1": 0.54,
334
+ "precision@5": 0.1694,
335
+ "precision@10": 0.0908,
336
+ "recall@1": 0.54,
337
+ "recall@5": 0.847,
338
+ "recall@10": 0.908,
339
+ "f1@1": 0.54,
340
+ "f1@5": 0.2823333333333334,
341
+ "f1@10": 0.16509090909090907,
342
+ "map@1": 0.54,
343
+ "map@5": 0.6618333333333334,
344
+ "map@10": 0.670495238095238,
345
+ "mrr@1": 0.54,
346
+ "mrr@5": 0.6618333333333334,
347
+ "mrr@10": 0.670495238095238,
348
+ "num_pred": 1000,
349
+ "num_data": 1000
350
+ },
351
+ "DocVQA": {
352
+ "hit@1": 0.93,
353
+ "hit@5": 0.986,
354
+ "hit@10": 0.991,
355
+ "ndcg_linear@1": 0.93,
356
+ "ndcg_linear@5": 0.9623408127289065,
357
+ "ndcg_linear@10": 0.9640582325003497,
358
+ "ndcg_exponential@1": 0.93,
359
+ "ndcg_exponential@5": 0.9623408127289065,
360
+ "ndcg_exponential@10": 0.9640582325003497,
361
+ "precision@1": 0.93,
362
+ "precision@5": 0.19720000000000004,
363
+ "precision@10": 0.09910000000000001,
364
+ "recall@1": 0.93,
365
+ "recall@5": 0.986,
366
+ "recall@10": 0.991,
367
+ "f1@1": 0.93,
368
+ "f1@5": 0.3286666666666666,
369
+ "f1@10": 0.1801818181818182,
370
+ "map@1": 0.93,
371
+ "map@5": 0.9542333333333334,
372
+ "map@10": 0.9550011904761905,
373
+ "mrr@1": 0.93,
374
+ "mrr@5": 0.9542333333333334,
375
+ "mrr@10": 0.9550011904761905,
376
+ "num_pred": 1000,
377
+ "num_data": 1000
378
+ },
379
+ "InfographicsVQA": {
380
+ "hit@1": 0.653,
381
+ "hit@5": 0.85,
382
+ "hit@10": 0.904,
383
+ "ndcg_linear@1": 0.653,
384
+ "ndcg_linear@5": 0.7628292030923156,
385
+ "ndcg_linear@10": 0.7804337590556499,
386
+ "ndcg_exponential@1": 0.653,
387
+ "ndcg_exponential@5": 0.7628292030923156,
388
+ "ndcg_exponential@10": 0.7804337590556499,
389
+ "precision@1": 0.653,
390
+ "precision@5": 0.17000000000000004,
391
+ "precision@10": 0.09040000000000001,
392
+ "recall@1": 0.653,
393
+ "recall@5": 0.85,
394
+ "recall@10": 0.904,
395
+ "f1@1": 0.653,
396
+ "f1@5": 0.2833333333333334,
397
+ "f1@10": 0.16436363636363638,
398
+ "map@1": 0.653,
399
+ "map@5": 0.7333500000000001,
400
+ "map@10": 0.7406988095238096,
401
+ "mrr@1": 0.653,
402
+ "mrr@5": 0.7333500000000001,
403
+ "mrr@10": 0.7406988095238096,
404
+ "num_pred": 1000,
405
+ "num_data": 1000
406
+ },
407
+ "ChartQA": {
408
+ "hit@1": 0.561,
409
+ "hit@5": 0.737,
410
+ "hit@10": 0.784,
411
+ "ndcg_linear@1": 0.561,
412
+ "ndcg_linear@5": 0.6571987612384224,
413
+ "ndcg_linear@10": 0.6725474536030825,
414
+ "ndcg_exponential@1": 0.561,
415
+ "ndcg_exponential@5": 0.6571987612384224,
416
+ "ndcg_exponential@10": 0.6725474536030825,
417
+ "precision@1": 0.561,
418
+ "precision@5": 0.1474,
419
+ "precision@10": 0.07840000000000001,
420
+ "recall@1": 0.561,
421
+ "recall@5": 0.737,
422
+ "recall@10": 0.784,
423
+ "f1@1": 0.561,
424
+ "f1@5": 0.24566666666666667,
425
+ "f1@10": 0.14254545454545456,
426
+ "map@1": 0.561,
427
+ "map@5": 0.6304333333333334,
428
+ "map@10": 0.6368575396825396,
429
+ "mrr@1": 0.561,
430
+ "mrr@5": 0.6304333333333334,
431
+ "mrr@10": 0.6368575396825396,
432
+ "num_pred": 1000,
433
+ "num_data": 1000
434
+ },
435
+ "Visual7W": {
436
+ "hit@1": 0.585,
437
+ "hit@5": 0.899,
438
+ "hit@10": 0.951,
439
+ "ndcg_linear@1": 0.585,
440
+ "ndcg_linear@5": 0.7591108361833063,
441
+ "ndcg_linear@10": 0.7764038115885976,
442
+ "ndcg_exponential@1": 0.585,
443
+ "ndcg_exponential@5": 0.7591108361833063,
444
+ "ndcg_exponential@10": 0.7764038115885976,
445
+ "precision@1": 0.585,
446
+ "precision@5": 0.17980000000000002,
447
+ "precision@10": 0.09510000000000002,
448
+ "recall@1": 0.585,
449
+ "recall@5": 0.899,
450
+ "recall@10": 0.951,
451
+ "f1@1": 0.585,
452
+ "f1@5": 0.29966666666666664,
453
+ "f1@10": 0.17290909090909087,
454
+ "map@1": 0.585,
455
+ "map@5": 0.7119166666666666,
456
+ "map@10": 0.7193325396825396,
457
+ "mrr@1": 0.585,
458
+ "mrr@5": 0.7119166666666666,
459
+ "mrr@10": 0.7193325396825396,
460
+ "num_pred": 1000,
461
+ "num_data": 1000
462
+ },
463
+ "ScienceQA": {
464
+ "hit@1": 0.473,
465
+ "hit@5": 0.775,
466
+ "hit@10": 0.876,
467
+ "ndcg_linear@1": 0.473,
468
+ "ndcg_linear@5": 0.637248574258738,
469
+ "ndcg_linear@10": 0.6701860011263443,
470
+ "ndcg_exponential@1": 0.473,
471
+ "ndcg_exponential@5": 0.637248574258738,
472
+ "ndcg_exponential@10": 0.6701860011263443,
473
+ "precision@1": 0.473,
474
+ "precision@5": 0.155,
475
+ "precision@10": 0.08760000000000001,
476
+ "recall@1": 0.473,
477
+ "recall@5": 0.775,
478
+ "recall@10": 0.876,
479
+ "f1@1": 0.473,
480
+ "f1@5": 0.25833333333333336,
481
+ "f1@10": 0.15927272727272726,
482
+ "map@1": 0.473,
483
+ "map@5": 0.5911666666666666,
484
+ "map@10": 0.604918253968254,
485
+ "mrr@1": 0.473,
486
+ "mrr@5": 0.5911666666666666,
487
+ "mrr@10": 0.604918253968254,
488
+ "num_pred": 1000,
489
+ "num_data": 1000
490
+ },
491
+ "VizWiz": {
492
+ "hit@1": 0.553,
493
+ "hit@5": 0.72,
494
+ "hit@10": 0.749,
495
+ "ndcg_linear@1": 0.553,
496
+ "ndcg_linear@5": 0.6469002810865487,
497
+ "ndcg_linear@10": 0.6563836673734713,
498
+ "ndcg_exponential@1": 0.553,
499
+ "ndcg_exponential@5": 0.6469002810865487,
500
+ "ndcg_exponential@10": 0.6563836673734713,
501
+ "precision@1": 0.553,
502
+ "precision@5": 0.144,
503
+ "precision@10": 0.0749,
504
+ "recall@1": 0.553,
505
+ "recall@5": 0.72,
506
+ "recall@10": 0.749,
507
+ "f1@1": 0.553,
508
+ "f1@5": 0.24000000000000005,
509
+ "f1@10": 0.13618181818181818,
510
+ "map@1": 0.553,
511
+ "map@5": 0.6221166666666667,
512
+ "map@10": 0.6260968253968253,
513
+ "mrr@1": 0.553,
514
+ "mrr@5": 0.6221166666666667,
515
+ "mrr@10": 0.6260968253968253,
516
+ "num_pred": 1000,
517
+ "num_data": 1000
518
+ },
519
+ "GQA": {
520
+ "hit@1": 0.744,
521
+ "hit@5": 0.923,
522
+ "hit@10": 0.961,
523
+ "ndcg_linear@1": 0.744,
524
+ "ndcg_linear@5": 0.8429932967431276,
525
+ "ndcg_linear@10": 0.8554002697803087,
526
+ "ndcg_exponential@1": 0.744,
527
+ "ndcg_exponential@5": 0.8429932967431276,
528
+ "ndcg_exponential@10": 0.8554002697803087,
529
+ "precision@1": 0.744,
530
+ "precision@5": 0.18460000000000001,
531
+ "precision@10": 0.09610000000000002,
532
+ "recall@1": 0.744,
533
+ "recall@5": 0.923,
534
+ "recall@10": 0.961,
535
+ "f1@1": 0.744,
536
+ "f1@5": 0.3076666666666667,
537
+ "f1@10": 0.17472727272727273,
538
+ "map@1": 0.744,
539
+ "map@5": 0.816,
540
+ "map@10": 0.8211888888888889,
541
+ "mrr@1": 0.744,
542
+ "mrr@5": 0.816,
543
+ "mrr@10": 0.8211888888888889,
544
+ "num_pred": 1000,
545
+ "num_data": 1000
546
+ },
547
+ "TextVQA": {
548
+ "hit@1": 0.831,
549
+ "hit@5": 0.903,
550
+ "hit@10": 0.92,
551
+ "ndcg_linear@1": 0.831,
552
+ "ndcg_linear@5": 0.8717715154114755,
553
+ "ndcg_linear@10": 0.8772359632419988,
554
+ "ndcg_exponential@1": 0.831,
555
+ "ndcg_exponential@5": 0.8717715154114755,
556
+ "ndcg_exponential@10": 0.8772359632419988,
557
+ "precision@1": 0.831,
558
+ "precision@5": 0.1806,
559
+ "precision@10": 0.09200000000000001,
560
+ "recall@1": 0.831,
561
+ "recall@5": 0.903,
562
+ "recall@10": 0.92,
563
+ "f1@1": 0.831,
564
+ "f1@5": 0.301,
565
+ "f1@10": 0.16727272727272724,
566
+ "map@1": 0.831,
567
+ "map@5": 0.8611666666666667,
568
+ "map@10": 0.8634039682539683,
569
+ "mrr@1": 0.831,
570
+ "mrr@5": 0.8611666666666667,
571
+ "mrr@10": 0.8634039682539683,
572
+ "num_pred": 1000,
573
+ "num_data": 1000
574
+ },
575
+ "VisDial": {
576
+ "hit@1": 0.794,
577
+ "hit@5": 0.953,
578
+ "hit@10": 0.982,
579
+ "ndcg_linear@1": 0.794,
580
+ "ndcg_linear@5": 0.8808729209948967,
581
+ "ndcg_linear@10": 0.8902552237878829,
582
+ "ndcg_exponential@1": 0.794,
583
+ "ndcg_exponential@5": 0.8808729209948967,
584
+ "ndcg_exponential@10": 0.8902552237878829,
585
+ "precision@1": 0.794,
586
+ "precision@5": 0.19060000000000002,
587
+ "precision@10": 0.09820000000000002,
588
+ "recall@1": 0.794,
589
+ "recall@5": 0.953,
590
+ "recall@10": 0.982,
591
+ "f1@1": 0.794,
592
+ "f1@5": 0.31766666666666665,
593
+ "f1@10": 0.1785454545454545,
594
+ "map@1": 0.794,
595
+ "map@5": 0.8566333333333334,
596
+ "map@10": 0.8605126984126985,
597
+ "mrr@1": 0.794,
598
+ "mrr@5": 0.8566333333333334,
599
+ "mrr@10": 0.8605126984126985,
600
+ "num_pred": 1000,
601
+ "num_data": 1000
602
+ },
603
+ "CIRR": {
604
+ "hit@1": 0.473,
605
+ "hit@5": 0.881,
606
+ "hit@10": 0.933,
607
+ "ndcg_linear@1": 0.473,
608
+ "ndcg_linear@5": 0.7007716056263877,
609
+ "ndcg_linear@10": 0.7176746558999346,
610
+ "ndcg_exponential@1": 0.473,
611
+ "ndcg_exponential@5": 0.7007716056263877,
612
+ "ndcg_exponential@10": 0.7176746558999346,
613
+ "precision@1": 0.473,
614
+ "precision@5": 0.1762,
615
+ "precision@10": 0.09330000000000001,
616
+ "recall@1": 0.473,
617
+ "recall@5": 0.881,
618
+ "recall@10": 0.933,
619
+ "f1@1": 0.473,
620
+ "f1@5": 0.2936666666666667,
621
+ "f1@10": 0.1696363636363636,
622
+ "map@1": 0.473,
623
+ "map@5": 0.6398666666666667,
624
+ "map@10": 0.6468948412698412,
625
+ "mrr@1": 0.473,
626
+ "mrr@5": 0.6398666666666667,
627
+ "mrr@10": 0.6468948412698412,
628
+ "num_pred": 1000,
629
+ "num_data": 1000
630
+ },
631
+ "VisualNews_t2i": {
632
+ "hit@1": 0.762,
633
+ "hit@5": 0.884,
634
+ "hit@10": 0.918,
635
+ "ndcg_linear@1": 0.762,
636
+ "ndcg_linear@5": 0.8291412055303354,
637
+ "ndcg_linear@10": 0.840484153972375,
638
+ "ndcg_exponential@1": 0.762,
639
+ "ndcg_exponential@5": 0.8291412055303354,
640
+ "ndcg_exponential@10": 0.840484153972375,
641
+ "precision@1": 0.762,
642
+ "precision@5": 0.17680000000000004,
643
+ "precision@10": 0.0918,
644
+ "recall@1": 0.762,
645
+ "recall@5": 0.884,
646
+ "recall@10": 0.918,
647
+ "f1@1": 0.762,
648
+ "f1@5": 0.29466666666666674,
649
+ "f1@10": 0.1669090909090909,
650
+ "map@1": 0.762,
651
+ "map@5": 0.8107000000000001,
652
+ "map@10": 0.8155873015873015,
653
+ "mrr@1": 0.762,
654
+ "mrr@5": 0.8107000000000001,
655
+ "mrr@10": 0.8155873015873015,
656
+ "num_pred": 1000,
657
+ "num_data": 1000
658
+ },
659
+ "VisualNews_i2t": {
660
+ "hit@1": 0.791,
661
+ "hit@5": 0.908,
662
+ "hit@10": 0.931,
663
+ "ndcg_linear@1": 0.791,
664
+ "ndcg_linear@5": 0.8551690273971704,
665
+ "ndcg_linear@10": 0.8625508148532727,
666
+ "ndcg_exponential@1": 0.791,
667
+ "ndcg_exponential@5": 0.8551690273971704,
668
+ "ndcg_exponential@10": 0.8625508148532727,
669
+ "precision@1": 0.791,
670
+ "precision@5": 0.1816,
671
+ "precision@10": 0.09310000000000002,
672
+ "recall@1": 0.791,
673
+ "recall@5": 0.908,
674
+ "recall@10": 0.931,
675
+ "f1@1": 0.791,
676
+ "f1@5": 0.3026666666666667,
677
+ "f1@10": 0.16927272727272724,
678
+ "map@1": 0.791,
679
+ "map@5": 0.8374166666666667,
680
+ "map@10": 0.8404353174603174,
681
+ "mrr@1": 0.791,
682
+ "mrr@5": 0.8374166666666667,
683
+ "mrr@10": 0.8404353174603174,
684
+ "num_pred": 1000,
685
+ "num_data": 1000
686
+ },
687
+ "MSCOCO_t2i": {
688
+ "hit@1": 0.741,
689
+ "hit@5": 0.935,
690
+ "hit@10": 0.974,
691
+ "ndcg_linear@1": 0.741,
692
+ "ndcg_linear@5": 0.8481271424203821,
693
+ "ndcg_linear@10": 0.8606938083382606,
694
+ "ndcg_exponential@1": 0.741,
695
+ "ndcg_exponential@5": 0.8481271424203821,
696
+ "ndcg_exponential@10": 0.8606938083382606,
697
+ "precision@1": 0.741,
698
+ "precision@5": 0.18700000000000003,
699
+ "precision@10": 0.09740000000000001,
700
+ "recall@1": 0.741,
701
+ "recall@5": 0.935,
702
+ "recall@10": 0.974,
703
+ "f1@1": 0.741,
704
+ "f1@5": 0.3116666666666667,
705
+ "f1@10": 0.17709090909090908,
706
+ "map@1": 0.741,
707
+ "map@5": 0.8188666666666666,
708
+ "map@10": 0.8240309523809524,
709
+ "mrr@1": 0.741,
710
+ "mrr@5": 0.8188666666666666,
711
+ "mrr@10": 0.8240309523809524,
712
+ "num_pred": 1000,
713
+ "num_data": 1000
714
+ },
715
+ "MSCOCO_i2t": {
716
+ "hit@1": 0.697,
717
+ "hit@5": 0.919,
718
+ "hit@10": 0.965,
719
+ "ndcg_linear@1": 0.697,
720
+ "ndcg_linear@5": 0.8184709214046806,
721
+ "ndcg_linear@10": 0.833832715681852,
722
+ "ndcg_exponential@1": 0.697,
723
+ "ndcg_exponential@5": 0.8184709214046806,
724
+ "ndcg_exponential@10": 0.833832715681852,
725
+ "precision@1": 0.697,
726
+ "precision@5": 0.18380000000000002,
727
+ "precision@10": 0.09650000000000002,
728
+ "recall@1": 0.697,
729
+ "recall@5": 0.919,
730
+ "recall@10": 0.965,
731
+ "f1@1": 0.697,
732
+ "f1@5": 0.30633333333333335,
733
+ "f1@10": 0.17545454545454545,
734
+ "map@1": 0.697,
735
+ "map@5": 0.7847833333333333,
736
+ "map@10": 0.7914162698412698,
737
+ "mrr@1": 0.697,
738
+ "mrr@5": 0.7847833333333333,
739
+ "mrr@10": 0.7914162698412698,
740
+ "num_pred": 1000,
741
+ "num_data": 1000
742
+ },
743
+ "NIGHTS": {
744
+ "hit@1": 0.661,
745
+ "hit@5": 0.981,
746
+ "hit@10": 0.995,
747
+ "ndcg_linear@1": 0.661,
748
+ "ndcg_linear@5": 0.844481977284671,
749
+ "ndcg_linear@10": 0.849108971640867,
750
+ "ndcg_exponential@1": 0.661,
751
+ "ndcg_exponential@5": 0.844481977284671,
752
+ "ndcg_exponential@10": 0.849108971640867,
753
+ "precision@1": 0.661,
754
+ "precision@5": 0.19620000000000004,
755
+ "precision@10": 0.09950000000000003,
756
+ "recall@1": 0.661,
757
+ "recall@5": 0.981,
758
+ "recall@10": 0.995,
759
+ "f1@1": 0.661,
760
+ "f1@5": 0.327,
761
+ "f1@10": 0.18090909090909088,
762
+ "map@1": 0.661,
763
+ "map@5": 0.7978666666666667,
764
+ "map@10": 0.7998357142857143,
765
+ "mrr@1": 0.661,
766
+ "mrr@5": 0.7978666666666667,
767
+ "mrr@10": 0.7998357142857143,
768
+ "num_pred": 1000,
769
+ "num_data": 1000
770
+ },
771
+ "WebQA": {
772
+ "hit@1": 0.911,
773
+ "hit@5": 0.989,
774
+ "hit@10": 0.993,
775
+ "ndcg_linear@1": 0.911,
776
+ "ndcg_linear@5": 0.9562555664516004,
777
+ "ndcg_linear@10": 0.9574560942638872,
778
+ "ndcg_exponential@1": 0.911,
779
+ "ndcg_exponential@5": 0.9562555664516004,
780
+ "ndcg_exponential@10": 0.9574560942638872,
781
+ "precision@1": 0.911,
782
+ "precision@5": 0.1978,
783
+ "precision@10": 0.09930000000000001,
784
+ "recall@1": 0.911,
785
+ "recall@5": 0.989,
786
+ "recall@10": 0.993,
787
+ "f1@1": 0.911,
788
+ "f1@5": 0.32966666666666666,
789
+ "f1@10": 0.18054545454545456,
790
+ "map@1": 0.911,
791
+ "map@5": 0.94505,
792
+ "map@10": 0.9454928571428572,
793
+ "mrr@1": 0.911,
794
+ "mrr@5": 0.94505,
795
+ "mrr@10": 0.9454928571428572,
796
+ "num_pred": 1000,
797
+ "num_data": 1000
798
+ },
799
+ "FashionIQ": {
800
+ "hit@1": 0.185,
801
+ "hit@5": 0.438,
802
+ "hit@10": 0.546,
803
+ "ndcg_linear@1": 0.185,
804
+ "ndcg_linear@5": 0.31634442487309344,
805
+ "ndcg_linear@10": 0.3509652493511108,
806
+ "ndcg_exponential@1": 0.185,
807
+ "ndcg_exponential@5": 0.31634442487309344,
808
+ "ndcg_exponential@10": 0.3509652493511108,
809
+ "precision@1": 0.185,
810
+ "precision@5": 0.0876,
811
+ "precision@10": 0.054599999999999996,
812
+ "recall@1": 0.185,
813
+ "recall@5": 0.438,
814
+ "recall@10": 0.546,
815
+ "f1@1": 0.185,
816
+ "f1@5": 0.14600000000000005,
817
+ "f1@10": 0.09927272727272728,
818
+ "map@1": 0.185,
819
+ "map@5": 0.27613333333333334,
820
+ "map@10": 0.2902329365079365,
821
+ "mrr@1": 0.185,
822
+ "mrr@5": 0.27613333333333334,
823
+ "mrr@10": 0.2902329365079365,
824
+ "num_pred": 1000,
825
+ "num_data": 1000
826
+ },
827
+ "Wiki-SS-NQ": {
828
+ "hit@1": 0.688,
829
+ "hit@5": 0.879,
830
+ "hit@10": 0.917,
831
+ "ndcg_linear@1": 0.688,
832
+ "ndcg_linear@5": 0.7938577226380621,
833
+ "ndcg_linear@10": 0.8061437893498671,
834
+ "ndcg_exponential@1": 0.688,
835
+ "ndcg_exponential@5": 0.7938577226380621,
836
+ "ndcg_exponential@10": 0.8061437893498671,
837
+ "precision@1": 0.688,
838
+ "precision@5": 0.1758,
839
+ "precision@10": 0.09170000000000002,
840
+ "recall@1": 0.688,
841
+ "recall@5": 0.879,
842
+ "recall@10": 0.917,
843
+ "f1@1": 0.688,
844
+ "f1@5": 0.293,
845
+ "f1@10": 0.16672727272727272,
846
+ "map@1": 0.688,
847
+ "map@5": 0.7651333333333334,
848
+ "map@10": 0.7702043650793651,
849
+ "mrr@1": 0.688,
850
+ "mrr@5": 0.7651333333333334,
851
+ "mrr@10": 0.7702043650793651,
852
+ "num_pred": 1000,
853
+ "num_data": 1000
854
+ },
855
+ "OVEN": {
856
+ "hit@1": 0.691,
857
+ "hit@5": 0.873,
858
+ "hit@10": 0.921,
859
+ "ndcg_linear@1": 0.691,
860
+ "ndcg_linear@5": 0.7901376964257225,
861
+ "ndcg_linear@10": 0.8062841721039863,
862
+ "ndcg_exponential@1": 0.691,
863
+ "ndcg_exponential@5": 0.7901376964257225,
864
+ "ndcg_exponential@10": 0.8062841721039863,
865
+ "precision@1": 0.691,
866
+ "precision@5": 0.17460000000000003,
867
+ "precision@10": 0.09210000000000002,
868
+ "recall@1": 0.691,
869
+ "recall@5": 0.873,
870
+ "recall@10": 0.921,
871
+ "f1@1": 0.691,
872
+ "f1@5": 0.291,
873
+ "f1@10": 0.16745454545454544,
874
+ "map@1": 0.691,
875
+ "map@5": 0.7623333333333333,
876
+ "map@10": 0.7693662698412698,
877
+ "mrr@1": 0.691,
878
+ "mrr@5": 0.7623333333333333,
879
+ "mrr@10": 0.7693662698412698,
880
+ "num_pred": 1000,
881
+ "num_data": 1000
882
+ },
883
+ "EDIS": {
884
+ "hit@1": 0.906,
885
+ "hit@5": 0.981,
886
+ "hit@10": 0.991,
887
+ "ndcg_linear@1": 0.906,
888
+ "ndcg_linear@5": 0.9501104422904603,
889
+ "ndcg_linear@10": 0.9532607983085303,
890
+ "ndcg_exponential@1": 0.906,
891
+ "ndcg_exponential@5": 0.9501104422904603,
892
+ "ndcg_exponential@10": 0.9532607983085303,
893
+ "precision@1": 0.906,
894
+ "precision@5": 0.19620000000000004,
895
+ "precision@10": 0.09910000000000002,
896
+ "recall@1": 0.906,
897
+ "recall@5": 0.981,
898
+ "recall@10": 0.991,
899
+ "f1@1": 0.906,
900
+ "f1@5": 0.327,
901
+ "f1@10": 0.18018181818181817,
902
+ "map@1": 0.906,
903
+ "map@5": 0.93945,
904
+ "map@10": 0.9407003968253969,
905
+ "mrr@1": 0.906,
906
+ "mrr@5": 0.93945,
907
+ "mrr@10": 0.9407003968253969,
908
+ "num_pred": 1000,
909
+ "num_data": 1000
910
+ },
911
+ "MSCOCO": {
912
+ "hit@1": 0.668,
913
+ "hit@5": 0.83,
914
+ "hit@10": 0.865,
915
+ "ndcg_linear@1": 0.668,
916
+ "ndcg_linear@5": 0.7581674826240974,
917
+ "ndcg_linear@10": 0.7697284046193552,
918
+ "ndcg_exponential@1": 0.668,
919
+ "ndcg_exponential@5": 0.7581674826240974,
920
+ "ndcg_exponential@10": 0.7697284046193552,
921
+ "precision@1": 0.668,
922
+ "precision@5": 0.166,
923
+ "precision@10": 0.0865,
924
+ "recall@1": 0.668,
925
+ "recall@5": 0.83,
926
+ "recall@10": 0.865,
927
+ "f1@1": 0.668,
928
+ "f1@5": 0.2766666666666667,
929
+ "f1@10": 0.15727272727272726,
930
+ "map@1": 0.668,
931
+ "map@5": 0.7338833333333334,
932
+ "map@10": 0.7387964285714285,
933
+ "mrr@1": 0.668,
934
+ "mrr@5": 0.7338833333333334,
935
+ "mrr@10": 0.7387964285714285,
936
+ "num_pred": 1000,
937
+ "num_data": 1000
938
+ },
939
+ "RefCOCO": {
940
+ "hit@1": 0.841,
941
+ "hit@5": 0.972,
942
+ "hit@10": 0.985,
943
+ "ndcg_linear@1": 0.841,
944
+ "ndcg_linear@5": 0.9172700496870271,
945
+ "ndcg_linear@10": 0.9215638033311572,
946
+ "ndcg_exponential@1": 0.841,
947
+ "ndcg_exponential@5": 0.9172700496870271,
948
+ "ndcg_exponential@10": 0.9215638033311572,
949
+ "precision@1": 0.841,
950
+ "precision@5": 0.19440000000000004,
951
+ "precision@10": 0.09850000000000003,
952
+ "recall@1": 0.841,
953
+ "recall@5": 0.972,
954
+ "recall@10": 0.985,
955
+ "f1@1": 0.841,
956
+ "f1@5": 0.324,
957
+ "f1@10": 0.17909090909090908,
958
+ "map@1": 0.841,
959
+ "map@5": 0.8985333333333333,
960
+ "map@10": 0.9003567460317461,
961
+ "mrr@1": 0.841,
962
+ "mrr@5": 0.8985333333333333,
963
+ "mrr@10": 0.9003567460317461,
964
+ "num_pred": 1000,
965
+ "num_data": 1000
966
+ },
967
+ "RefCOCO-Matching": {
968
+ "hit@1": 0.879,
969
+ "hit@5": 1.0,
970
+ "hit@10": 1.0,
971
+ "ndcg_linear@1": 0.879,
972
+ "ndcg_linear@5": 0.9572352894428607,
973
+ "ndcg_linear@10": 0.9572352894428607,
974
+ "ndcg_exponential@1": 0.879,
975
+ "ndcg_exponential@5": 0.9572352894428607,
976
+ "ndcg_exponential@10": 0.9572352894428607,
977
+ "precision@1": 0.879,
978
+ "precision@5": 0.20000000000000004,
979
+ "precision@10": 0.10000000000000002,
980
+ "recall@1": 0.879,
981
+ "recall@5": 1.0,
982
+ "recall@10": 1.0,
983
+ "f1@1": 0.879,
984
+ "f1@5": 0.3333333333333333,
985
+ "f1@10": 0.18181818181818182,
986
+ "map@1": 0.879,
987
+ "map@5": 0.9425,
988
+ "map@10": 0.9425,
989
+ "mrr@1": 0.879,
990
+ "mrr@5": 0.9395,
991
+ "mrr@10": 0.9395,
992
+ "num_pred": 1000,
993
+ "num_data": 1000
994
+ },
995
+ "Visual7W-Pointing": {
996
+ "hit@1": 0.846,
997
+ "hit@5": 0.949,
998
+ "hit@10": 0.976,
999
+ "ndcg_linear@1": 0.846,
1000
+ "ndcg_linear@5": 0.905021040236476,
1001
+ "ndcg_linear@10": 0.9137472283052835,
1002
+ "ndcg_exponential@1": 0.846,
1003
+ "ndcg_exponential@5": 0.905021040236476,
1004
+ "ndcg_exponential@10": 0.9137472283052835,
1005
+ "precision@1": 0.846,
1006
+ "precision@5": 0.18980000000000002,
1007
+ "precision@10": 0.0976,
1008
+ "recall@1": 0.846,
1009
+ "recall@5": 0.949,
1010
+ "recall@10": 0.976,
1011
+ "f1@1": 0.846,
1012
+ "f1@5": 0.3163333333333333,
1013
+ "f1@10": 0.17745454545454545,
1014
+ "map@1": 0.846,
1015
+ "map@5": 0.89,
1016
+ "map@10": 0.8936003968253967,
1017
+ "mrr@1": 0.846,
1018
+ "mrr@5": 0.89,
1019
+ "mrr@10": 0.8936003968253967,
1020
+ "num_pred": 1000,
1021
+ "num_data": 1000
1022
+ }
1023
+ },
1024
+ "visdoc": {
1025
+ "ViDoRe_arxivqa": {
1026
+ "hit@1": 0.674,
1027
+ "hit@5": 0.796,
1028
+ "hit@10": 0.842,
1029
+ "ndcg_linear@1": 0.674,
1030
+ "ndcg_linear@5": 0.7371517581853998,
1031
+ "ndcg_linear@10": 0.7522168662953272,
1032
+ "ndcg_exponential@1": 0.674,
1033
+ "ndcg_exponential@5": 0.7371517581853998,
1034
+ "ndcg_exponential@10": 0.7522168662953272,
1035
+ "precision@1": 0.674,
1036
+ "precision@5": 0.15919999999999998,
1037
+ "precision@10": 0.0842,
1038
+ "recall@1": 0.674,
1039
+ "recall@5": 0.796,
1040
+ "recall@10": 0.842,
1041
+ "f1@1": 0.674,
1042
+ "f1@5": 0.26533333333333337,
1043
+ "f1@10": 0.15309090909090908,
1044
+ "map@1": 0.674,
1045
+ "map@5": 0.7178000000000001,
1046
+ "map@10": 0.7241246031746031,
1047
+ "mrr@1": 0.674,
1048
+ "mrr@5": 0.7178000000000001,
1049
+ "mrr@10": 0.7241246031746031,
1050
+ "num_pred": 500,
1051
+ "num_data": 500
1052
+ },
1053
+ "ViDoRe_docvqa": {
1054
+ "hit@1": 0.35698447893569846,
1055
+ "hit@5": 0.5343680709534369,
1056
+ "hit@10": 0.6053215077605322,
1057
+ "ndcg_linear@1": 0.35698447893569846,
1058
+ "ndcg_linear@5": 0.450097536929264,
1059
+ "ndcg_linear@10": 0.4728021762728742,
1060
+ "ndcg_exponential@1": 0.35698447893569846,
1061
+ "ndcg_exponential@5": 0.450097536929264,
1062
+ "ndcg_exponential@10": 0.4728021762728742,
1063
+ "precision@1": 0.35698447893569846,
1064
+ "precision@5": 0.1082039911308204,
1065
+ "precision@10": 0.06186252771618625,
1066
+ "recall@1": 0.3526237989652624,
1067
+ "recall@5": 0.5276053215077605,
1068
+ "recall@10": 0.5964153732446416,
1069
+ "f1@1": 0.35365853658536583,
1070
+ "f1@5": 0.17856304384281432,
1071
+ "f1@10": 0.11150512458716451,
1072
+ "map@1": 0.35698447893569846,
1073
+ "map@5": 0.42237620103473766,
1074
+ "map@10": 0.4318832928589026,
1075
+ "mrr@1": 0.35698447893569846,
1076
+ "mrr@5": 0.42738359201773835,
1077
+ "mrr@10": 0.4369241192411924,
1078
+ "num_pred": 451,
1079
+ "num_data": 451
1080
+ },
1081
+ "ViDoRe_infovqa": {
1082
+ "hit@1": 0.7348178137651822,
1083
+ "hit@5": 0.8805668016194332,
1084
+ "hit@10": 0.9230769230769231,
1085
+ "ndcg_linear@1": 0.7348178137651822,
1086
+ "ndcg_linear@5": 0.8141460784346112,
1087
+ "ndcg_linear@10": 0.8280697125910069,
1088
+ "ndcg_exponential@1": 0.7348178137651822,
1089
+ "ndcg_exponential@5": 0.8141460784346112,
1090
+ "ndcg_exponential@10": 0.8280697125910069,
1091
+ "precision@1": 0.7348178137651822,
1092
+ "precision@5": 0.17651821862348177,
1093
+ "precision@10": 0.09251012145748988,
1094
+ "recall@1": 0.7348178137651822,
1095
+ "recall@5": 0.8805668016194332,
1096
+ "recall@10": 0.9230769230769231,
1097
+ "f1@1": 0.7348178137651822,
1098
+ "f1@5": 0.29400424137266246,
1099
+ "f1@10": 0.16813887866519445,
1100
+ "map@1": 0.7348178137651822,
1101
+ "map@5": 0.7919028340080971,
1102
+ "map@10": 0.7977612299980721,
1103
+ "mrr@1": 0.7348178137651822,
1104
+ "mrr@5": 0.7917341430499325,
1105
+ "mrr@10": 0.7975925390399075,
1106
+ "num_pred": 494,
1107
+ "num_data": 494
1108
+ },
1109
+ "ViDoRe_tabfquad": {
1110
+ "hit@1": 0.8035714285714286,
1111
+ "hit@5": 0.95,
1112
+ "hit@10": 0.9785714285714285,
1113
+ "ndcg_linear@1": 0.8035714285714286,
1114
+ "ndcg_linear@5": 0.8880525993445776,
1115
+ "ndcg_linear@10": 0.8974326459361368,
1116
+ "ndcg_exponential@1": 0.8035714285714286,
1117
+ "ndcg_exponential@5": 0.8880525993445776,
1118
+ "ndcg_exponential@10": 0.8974326459361368,
1119
+ "precision@1": 0.8035714285714286,
1120
+ "precision@5": 0.18999999999999995,
1121
+ "precision@10": 0.09785714285714285,
1122
+ "recall@1": 0.8035714285714286,
1123
+ "recall@5": 0.95,
1124
+ "recall@10": 0.9785714285714285,
1125
+ "f1@1": 0.8035714285714286,
1126
+ "f1@5": 0.3166666666666667,
1127
+ "f1@10": 0.17792207792207795,
1128
+ "map@1": 0.8035714285714286,
1129
+ "map@5": 0.866904761904762,
1130
+ "map@10": 0.8708616780045352,
1131
+ "mrr@1": 0.8035714285714286,
1132
+ "mrr@5": 0.866904761904762,
1133
+ "mrr@10": 0.8708616780045352,
1134
+ "num_pred": 280,
1135
+ "num_data": 280
1136
+ },
1137
+ "ViDoRe_tatdqa": {
1138
+ "hit@1": 0.35297691373025514,
1139
+ "hit@5": 0.6233292831105711,
1140
+ "hit@10": 0.7424058323207776,
1141
+ "ndcg_linear@1": 0.35297691373025514,
1142
+ "ndcg_linear@5": 0.4959176191553392,
1143
+ "ndcg_linear@10": 0.5340857919511109,
1144
+ "ndcg_exponential@1": 0.35297691373025514,
1145
+ "ndcg_exponential@5": 0.4959176191553392,
1146
+ "ndcg_exponential@10": 0.5340857919511109,
1147
+ "precision@1": 0.35297691373025514,
1148
+ "precision@5": 0.12503037667071687,
1149
+ "precision@10": 0.07448359659781288,
1150
+ "recall@1": 0.35236938031591736,
1151
+ "recall@5": 0.6230255164034022,
1152
+ "recall@10": 0.7424058323207776,
1153
+ "f1@1": 0.35257189145402995,
1154
+ "f1@5": 0.20818144997974894,
1155
+ "f1@10": 0.13535108067307342,
1156
+ "map@1": 0.35297691373025514,
1157
+ "map@5": 0.45365026326447955,
1158
+ "map@10": 0.4691597234276456,
1159
+ "mrr@1": 0.35297691373025514,
1160
+ "mrr@5": 0.4537262049412718,
1161
+ "mrr@10": 0.4691597234276456,
1162
+ "num_pred": 1646,
1163
+ "num_data": 1646
1164
+ },
1165
+ "ViDoRe_shiftproject": {
1166
+ "hit@1": 0.57,
1167
+ "hit@5": 0.87,
1168
+ "hit@10": 0.91,
1169
+ "ndcg_linear@1": 0.57,
1170
+ "ndcg_linear@5": 0.7257169786666456,
1171
+ "ndcg_linear@10": 0.7388716274345029,
1172
+ "ndcg_exponential@1": 0.57,
1173
+ "ndcg_exponential@5": 0.7257169786666456,
1174
+ "ndcg_exponential@10": 0.7388716274345029,
1175
+ "precision@1": 0.57,
1176
+ "precision@5": 0.17399999999999996,
1177
+ "precision@10": 0.09099999999999998,
1178
+ "recall@1": 0.57,
1179
+ "recall@5": 0.87,
1180
+ "recall@10": 0.91,
1181
+ "f1@1": 0.57,
1182
+ "f1@5": 0.29000000000000004,
1183
+ "f1@10": 0.16545454545454555,
1184
+ "map@1": 0.57,
1185
+ "map@5": 0.6779999999999999,
1186
+ "map@10": 0.6835357142857142,
1187
+ "mrr@1": 0.57,
1188
+ "mrr@5": 0.6779999999999999,
1189
+ "mrr@10": 0.6835357142857142,
1190
+ "num_pred": 100,
1191
+ "num_data": 100
1192
+ },
1193
+ "ViDoRe_syntheticDocQA_artificial_intelligence": {
1194
+ "hit@1": 0.84,
1195
+ "hit@5": 0.95,
1196
+ "hit@10": 0.98,
1197
+ "ndcg_linear@1": 0.84,
1198
+ "ndcg_linear@5": 0.8979742462875491,
1199
+ "ndcg_linear@10": 0.90802430025982,
1200
+ "ndcg_exponential@1": 0.84,
1201
+ "ndcg_exponential@5": 0.8979742462875491,
1202
+ "ndcg_exponential@10": 0.90802430025982,
1203
+ "precision@1": 0.84,
1204
+ "precision@5": 0.18999999999999997,
1205
+ "precision@10": 0.09799999999999999,
1206
+ "recall@1": 0.84,
1207
+ "recall@5": 0.95,
1208
+ "recall@10": 0.98,
1209
+ "f1@1": 0.84,
1210
+ "f1@5": 0.3166666666666667,
1211
+ "f1@10": 0.17818181818181825,
1212
+ "map@1": 0.84,
1213
+ "map@5": 0.8806666666666665,
1214
+ "map@10": 0.8850119047619047,
1215
+ "mrr@1": 0.84,
1216
+ "mrr@5": 0.8806666666666665,
1217
+ "mrr@10": 0.8850119047619047,
1218
+ "num_pred": 100,
1219
+ "num_data": 100
1220
+ },
1221
+ "ViDoRe_syntheticDocQA_energy": {
1222
+ "hit@1": 0.75,
1223
+ "hit@5": 0.92,
1224
+ "hit@10": 0.94,
1225
+ "ndcg_linear@1": 0.75,
1226
+ "ndcg_linear@5": 0.8426960276192014,
1227
+ "ndcg_linear@10": 0.8489200092157135,
1228
+ "ndcg_exponential@1": 0.75,
1229
+ "ndcg_exponential@5": 0.8426960276192014,
1230
+ "ndcg_exponential@10": 0.8489200092157135,
1231
+ "precision@1": 0.75,
1232
+ "precision@5": 0.18399999999999994,
1233
+ "precision@10": 0.09399999999999999,
1234
+ "recall@1": 0.75,
1235
+ "recall@5": 0.92,
1236
+ "recall@10": 0.94,
1237
+ "f1@1": 0.75,
1238
+ "f1@5": 0.3066666666666667,
1239
+ "f1@10": 0.170909090909091,
1240
+ "map@1": 0.75,
1241
+ "map@5": 0.8168333333333332,
1242
+ "map@10": 0.8192619047619047,
1243
+ "mrr@1": 0.75,
1244
+ "mrr@5": 0.8168333333333332,
1245
+ "mrr@10": 0.8192619047619047,
1246
+ "num_pred": 100,
1247
+ "num_data": 100
1248
+ },
1249
+ "ViDoRe_syntheticDocQA_government_reports": {
1250
+ "hit@1": 0.75,
1251
+ "hit@5": 0.96,
1252
+ "hit@10": 0.98,
1253
+ "ndcg_linear@1": 0.75,
1254
+ "ndcg_linear@5": 0.8706343991257575,
1255
+ "ndcg_linear@10": 0.8769780324157306,
1256
+ "ndcg_exponential@1": 0.75,
1257
+ "ndcg_exponential@5": 0.8706343991257575,
1258
+ "ndcg_exponential@10": 0.8769780324157306,
1259
+ "precision@1": 0.75,
1260
+ "precision@5": 0.19199999999999995,
1261
+ "precision@10": 0.09799999999999999,
1262
+ "recall@1": 0.75,
1263
+ "recall@5": 0.96,
1264
+ "recall@10": 0.98,
1265
+ "f1@1": 0.75,
1266
+ "f1@5": 0.32000000000000006,
1267
+ "f1@10": 0.17818181818181825,
1268
+ "map@1": 0.75,
1269
+ "map@5": 0.84,
1270
+ "map@10": 0.8425396825396825,
1271
+ "mrr@1": 0.75,
1272
+ "mrr@5": 0.84,
1273
+ "mrr@10": 0.8425396825396825,
1274
+ "num_pred": 100,
1275
+ "num_data": 100
1276
+ },
1277
+ "ViDoRe_syntheticDocQA_healthcare_industry": {
1278
+ "hit@1": 0.82,
1279
+ "hit@5": 0.99,
1280
+ "hit@10": 1.0,
1281
+ "ndcg_linear@1": 0.82,
1282
+ "ndcg_linear@5": 0.9164460946182851,
1283
+ "ndcg_linear@10": 0.9200081664893653,
1284
+ "ndcg_exponential@1": 0.82,
1285
+ "ndcg_exponential@5": 0.9164460946182851,
1286
+ "ndcg_exponential@10": 0.9200081664893653,
1287
+ "precision@1": 0.82,
1288
+ "precision@5": 0.19799999999999998,
1289
+ "precision@10": 0.09999999999999998,
1290
+ "recall@1": 0.82,
1291
+ "recall@5": 0.99,
1292
+ "recall@10": 1.0,
1293
+ "f1@1": 0.82,
1294
+ "f1@5": 0.3300000000000001,
1295
+ "f1@10": 0.1818181818181819,
1296
+ "map@1": 0.82,
1297
+ "map@5": 0.8915000000000001,
1298
+ "map@10": 0.8931666666666667,
1299
+ "mrr@1": 0.82,
1300
+ "mrr@5": 0.8915000000000001,
1301
+ "mrr@10": 0.8931666666666667,
1302
+ "num_pred": 100,
1303
+ "num_data": 100
1304
+ },
1305
+ "ViDoRe_esg_reports_human_labeled_v2": {
1306
+ "hit@1": 0.5384615384615384,
1307
+ "hit@5": 0.8076923076923077,
1308
+ "hit@10": 0.9038461538461539,
1309
+ "ndcg_linear@1": 0.5384615384615384,
1310
+ "ndcg_linear@5": 0.5857101818076832,
1311
+ "ndcg_linear@10": 0.6265239767252975,
1312
+ "ndcg_exponential@1": 0.5384615384615384,
1313
+ "ndcg_exponential@5": 0.5878008188023434,
1314
+ "ndcg_exponential@10": 0.6292190672539935,
1315
+ "precision@1": 0.5384615384615384,
1316
+ "precision@5": 0.2269230769230769,
1317
+ "precision@10": 0.14423076923076922,
1318
+ "recall@1": 0.3721153846153846,
1319
+ "recall@5": 0.6419955044955046,
1320
+ "recall@10": 0.7564185814185814,
1321
+ "f1@1": 0.4093688362919133,
1322
+ "f1@5": 0.3009682719241543,
1323
+ "f1@10": 0.22103693817494724,
1324
+ "map@1": 0.5384615384615384,
1325
+ "map@5": 0.5227403846153846,
1326
+ "map@10": 0.5419889601139601,
1327
+ "mrr@1": 0.5384615384615384,
1328
+ "mrr@5": 0.6317307692307691,
1329
+ "mrr@10": 0.6435363247863248,
1330
+ "num_pred": 52,
1331
+ "num_data": 52
1332
+ },
1333
+ "ViDoRe_biomedical_lectures_v2": {
1334
+ "hit@1": 0.51875,
1335
+ "hit@5": 0.81875,
1336
+ "hit@10": 0.90625,
1337
+ "ndcg_linear@1": 0.51875,
1338
+ "ndcg_linear@5": 0.5599127423800386,
1339
+ "ndcg_linear@10": 0.6024210971755942,
1340
+ "ndcg_exponential@1": 0.51875,
1341
+ "ndcg_exponential@5": 0.5599127423800386,
1342
+ "ndcg_exponential@10": 0.6024210971755943,
1343
+ "precision@1": 0.51875,
1344
+ "precision@5": 0.255,
1345
+ "precision@10": 0.169375,
1346
+ "recall@1": 0.31672416125541125,
1347
+ "recall@5": 0.5947338537687802,
1348
+ "recall@10": 0.7137503580977846,
1349
+ "f1@1": 0.3591993596681097,
1350
+ "f1@5": 0.3177249382561883,
1351
+ "f1@10": 0.24713793423352243,
1352
+ "map@1": 0.51875,
1353
+ "map@5": 0.4872517361111111,
1354
+ "map@10": 0.5087469706632654,
1355
+ "mrr@1": 0.51875,
1356
+ "mrr@5": 0.6339583333333334,
1357
+ "mrr@10": 0.6465128968253968,
1358
+ "num_pred": 160,
1359
+ "num_data": 160
1360
+ },
1361
+ "ViDoRe_biomedical_lectures_v2_multilingual": {
1362
+ "hit@1": 0.4875,
1363
+ "hit@5": 0.796875,
1364
+ "hit@10": 0.8734375,
1365
+ "ndcg_linear@1": 0.4875,
1366
+ "ndcg_linear@5": 0.5287109563499492,
1367
+ "ndcg_linear@10": 0.5674601302198331,
1368
+ "ndcg_exponential@1": 0.4875,
1369
+ "ndcg_exponential@5": 0.5287109563499492,
1370
+ "ndcg_exponential@10": 0.5674601302198332,
1371
+ "precision@1": 0.4875,
1372
+ "precision@5": 0.2425,
1373
+ "precision@10": 0.16031250000000002,
1374
+ "recall@1": 0.3014277259199134,
1375
+ "recall@5": 0.567796524859944,
1376
+ "recall@10": 0.679209887079832,
1377
+ "f1@1": 0.3399399125180375,
1378
+ "f1@5": 0.30168018093018095,
1379
+ "f1@10": 0.23434101101104776,
1380
+ "map@1": 0.4875,
1381
+ "map@5": 0.45663975694444436,
1382
+ "map@10": 0.476485510263133,
1383
+ "mrr@1": 0.4875,
1384
+ "mrr@5": 0.5992447916666667,
1385
+ "mrr@10": 0.6098208085317461,
1386
+ "num_pred": 640,
1387
+ "num_data": 640
1388
+ },
1389
+ "ViDoRe_economics_reports_v2": {
1390
+ "hit@1": 0.603448275862069,
1391
+ "hit@5": 0.9137931034482759,
1392
+ "hit@10": 0.9655172413793104,
1393
+ "ndcg_linear@1": 0.603448275862069,
1394
+ "ndcg_linear@5": 0.5638400234406225,
1395
+ "ndcg_linear@10": 0.5396968611894655,
1396
+ "ndcg_exponential@1": 0.603448275862069,
1397
+ "ndcg_exponential@5": 0.5638400234406225,
1398
+ "ndcg_exponential@10": 0.5396968611894654,
1399
+ "precision@1": 0.603448275862069,
1400
+ "precision@5": 0.48620689655172417,
1401
+ "precision@10": 0.38620689655172413,
1402
+ "recall@1": 0.07922120644047585,
1403
+ "recall@5": 0.31144897230589963,
1404
+ "recall@10": 0.420215949960037,
1405
+ "f1@1": 0.12320812368054741,
1406
+ "f1@5": 0.3051673741988237,
1407
+ "f1@10": 0.3255100111938643,
1408
+ "map@1": 0.603448275862069,
1409
+ "map@5": 0.45996647509578553,
1410
+ "map@10": 0.4012958157400891,
1411
+ "mrr@1": 0.603448275862069,
1412
+ "mrr@5": 0.7333333333333334,
1413
+ "mrr@10": 0.7408045977011496,
1414
+ "num_pred": 58,
1415
+ "num_data": 58
1416
+ },
1417
+ "ViDoRe_economics_reports_v2_multilingual": {
1418
+ "hit@1": 0.4956896551724138,
1419
+ "hit@5": 0.8405172413793104,
1420
+ "hit@10": 0.9051724137931034,
1421
+ "ndcg_linear@1": 0.4956896551724138,
1422
+ "ndcg_linear@5": 0.47894537575268276,
1423
+ "ndcg_linear@10": 0.4634894340243453,
1424
+ "ndcg_exponential@1": 0.4956896551724138,
1425
+ "ndcg_exponential@5": 0.47894537575268276,
1426
+ "ndcg_exponential@10": 0.46348943402434517,
1427
+ "precision@1": 0.4956896551724138,
1428
+ "precision@5": 0.4241379310344828,
1429
+ "precision@10": 0.34310344827586203,
1430
+ "recall@1": 0.061453691971240614,
1431
+ "recall@5": 0.2611222491517723,
1432
+ "recall@10": 0.3668674404931723,
1433
+ "f1@1": 0.09778602775368742,
1434
+ "f1@5": 0.2569545227156983,
1435
+ "f1@10": 0.285174136727715,
1436
+ "map@1": 0.4956896551724138,
1437
+ "map@5": 0.3815541187739463,
1438
+ "map@10": 0.33134604676001944,
1439
+ "mrr@1": 0.4956896551724138,
1440
+ "mrr@5": 0.626580459770115,
1441
+ "mrr@10": 0.6353721948549534,
1442
+ "num_pred": 232,
1443
+ "num_data": 232
1444
+ },
1445
+ "ViDoRe_esg_reports_v2": {
1446
+ "hit@1": 0.5789473684210527,
1447
+ "hit@5": 0.7894736842105263,
1448
+ "hit@10": 0.9122807017543859,
1449
+ "ndcg_linear@1": 0.5789473684210527,
1450
+ "ndcg_linear@5": 0.5578170329058069,
1451
+ "ndcg_linear@10": 0.6128892612884805,
1452
+ "ndcg_exponential@1": 0.5789473684210527,
1453
+ "ndcg_exponential@5": 0.5578170329058068,
1454
+ "ndcg_exponential@10": 0.6128892612884805,
1455
+ "precision@1": 0.5789473684210527,
1456
+ "precision@5": 0.29122807017543856,
1457
+ "precision@10": 0.20175438596491233,
1458
+ "recall@1": 0.25954469507101086,
1459
+ "recall@5": 0.5711779448621553,
1460
+ "recall@10": 0.7492481203007518,
1461
+ "f1@1": 0.3216462491598608,
1462
+ "f1@5": 0.3334364669370541,
1463
+ "f1@10": 0.2802500048548606,
1464
+ "map@1": 0.5789473684210527,
1465
+ "map@5": 0.47171052631578947,
1466
+ "map@10": 0.49674951267056533,
1467
+ "mrr@1": 0.5789473684210527,
1468
+ "mrr@5": 0.6605263157894736,
1469
+ "mrr@10": 0.6788707880813143,
1470
+ "num_pred": 57,
1471
+ "num_data": 57
1472
+ },
1473
+ "ViDoRe_esg_reports_v2_multilingual": {
1474
+ "hit@1": 0.5394736842105263,
1475
+ "hit@5": 0.793859649122807,
1476
+ "hit@10": 0.8903508771929824,
1477
+ "ndcg_linear@1": 0.5394736842105263,
1478
+ "ndcg_linear@5": 0.5339065136145643,
1479
+ "ndcg_linear@10": 0.5850795107813987,
1480
+ "ndcg_exponential@1": 0.5394736842105263,
1481
+ "ndcg_exponential@5": 0.5339065136145642,
1482
+ "ndcg_exponential@10": 0.5850795107813987,
1483
+ "precision@1": 0.5394736842105263,
1484
+ "precision@5": 0.27017543859649124,
1485
+ "precision@10": 0.18815789473684214,
1486
+ "recall@1": 0.2494935254803676,
1487
+ "recall@5": 0.5548819966583124,
1488
+ "recall@10": 0.7172044695071011,
1489
+ "f1@1": 0.3067280776627419,
1490
+ "f1@5": 0.3151451349460318,
1491
+ "f1@10": 0.2614781609210891,
1492
+ "map@1": 0.5394736842105263,
1493
+ "map@5": 0.443368664717349,
1494
+ "map@10": 0.46742985937064885,
1495
+ "mrr@1": 0.5394736842105263,
1496
+ "mrr@5": 0.6444444444444444,
1497
+ "mrr@10": 0.6574578808131439,
1498
+ "num_pred": 228,
1499
+ "num_data": 228
1500
+ },
1501
+ "VisRAG_ArxivQA": {
1502
+ "hit@1": 0.6801470588235294,
1503
+ "hit@5": 0.7879901960784313,
1504
+ "hit@10": 0.8247549019607843,
1505
+ "ndcg_linear@1": 0.6801470588235294,
1506
+ "ndcg_linear@5": 0.738423381102982,
1507
+ "ndcg_linear@10": 0.7502580518543612,
1508
+ "ndcg_exponential@1": 0.6801470588235294,
1509
+ "ndcg_exponential@5": 0.738423381102982,
1510
+ "ndcg_exponential@10": 0.7502580518543612,
1511
+ "precision@1": 0.6801470588235294,
1512
+ "precision@5": 0.15759803921568627,
1513
+ "precision@10": 0.08247549019607842,
1514
+ "recall@1": 0.6801470588235294,
1515
+ "recall@5": 0.7879901960784313,
1516
+ "recall@10": 0.8247549019607843,
1517
+ "f1@1": 0.6801470588235294,
1518
+ "f1@5": 0.2626633986928105,
1519
+ "f1@10": 0.14995543672014264,
1520
+ "map@1": 0.6801470588235294,
1521
+ "map@5": 0.7218545751633987,
1522
+ "map@10": 0.7267113095238096,
1523
+ "mrr@1": 0.6801470588235294,
1524
+ "mrr@5": 0.7218545751633987,
1525
+ "mrr@10": 0.7267113095238096,
1526
+ "num_pred": 816,
1527
+ "num_data": 816
1528
+ },
1529
+ "VisRAG_ChartQA": {
1530
+ "hit@1": 0.7142857142857143,
1531
+ "hit@5": 0.873015873015873,
1532
+ "hit@10": 0.9047619047619048,
1533
+ "ndcg_linear@1": 0.7142857142857143,
1534
+ "ndcg_linear@5": 0.8017188056146399,
1535
+ "ndcg_linear@10": 0.813026970284736,
1536
+ "ndcg_exponential@1": 0.7142857142857143,
1537
+ "ndcg_exponential@5": 0.8017188056146399,
1538
+ "ndcg_exponential@10": 0.813026970284736,
1539
+ "precision@1": 0.7142857142857143,
1540
+ "precision@5": 0.1746031746031745,
1541
+ "precision@10": 0.09047619047619043,
1542
+ "recall@1": 0.7142857142857143,
1543
+ "recall@5": 0.873015873015873,
1544
+ "recall@10": 0.9047619047619048,
1545
+ "f1@1": 0.7142857142857143,
1546
+ "f1@5": 0.29100529100529093,
1547
+ "f1@10": 0.16450216450216454,
1548
+ "map@1": 0.7142857142857143,
1549
+ "map@5": 0.7777777777777778,
1550
+ "map@10": 0.7830687830687831,
1551
+ "mrr@1": 0.7142857142857143,
1552
+ "mrr@5": 0.7777777777777778,
1553
+ "mrr@10": 0.7830687830687831,
1554
+ "num_pred": 63,
1555
+ "num_data": 63
1556
+ },
1557
+ "VisRAG_MP-DocVQA": {
1558
+ "hit@1": 0.6412859560067682,
1559
+ "hit@5": 0.8426395939086294,
1560
+ "hit@10": 0.8917089678510999,
1561
+ "ndcg_linear@1": 0.6412859560067682,
1562
+ "ndcg_linear@5": 0.7505637234725795,
1563
+ "ndcg_linear@10": 0.766968360939859,
1564
+ "ndcg_exponential@1": 0.6412859560067682,
1565
+ "ndcg_exponential@5": 0.7505637234725795,
1566
+ "ndcg_exponential@10": 0.766968360939859,
1567
+ "precision@1": 0.6412859560067682,
1568
+ "precision@5": 0.16852791878172588,
1569
+ "precision@10": 0.08917089678510996,
1570
+ "recall@1": 0.6412859560067682,
1571
+ "recall@5": 0.8426395939086294,
1572
+ "recall@10": 0.8917089678510999,
1573
+ "f1@1": 0.6412859560067682,
1574
+ "f1@5": 0.28087986463620984,
1575
+ "f1@10": 0.16212890324565454,
1576
+ "map@1": 0.6412859560067682,
1577
+ "map@5": 0.7197123519458545,
1578
+ "map@10": 0.7268001504042113,
1579
+ "mrr@1": 0.6412859560067682,
1580
+ "mrr@5": 0.7197123519458545,
1581
+ "mrr@10": 0.7268001504042113,
1582
+ "num_pred": 591,
1583
+ "num_data": 591
1584
+ },
1585
+ "VisRAG_SlideVQA": {
1586
+ "hit@1": 0.8525179856115108,
1587
+ "hit@5": 0.9586330935251799,
1588
+ "hit@10": 0.9730215827338129,
1589
+ "ndcg_linear@1": 0.8525179856115108,
1590
+ "ndcg_linear@5": 0.891546429115487,
1591
+ "ndcg_linear@10": 0.89899357256547,
1592
+ "ndcg_exponential@1": 0.8525179856115108,
1593
+ "ndcg_exponential@5": 0.891546429115487,
1594
+ "ndcg_exponential@10": 0.89899357256547,
1595
+ "precision@1": 0.8525179856115108,
1596
+ "precision@5": 0.23489208633093525,
1597
+ "precision@10": 0.12032374100719423,
1598
+ "recall@1": 0.7320143884892086,
1599
+ "recall@5": 0.9370503597122302,
1600
+ "recall@10": 0.9577338129496403,
1601
+ "f1@1": 0.7721822541966427,
1602
+ "f1@5": 0.3688763275094211,
1603
+ "f1@10": 0.2113309352517986,
1604
+ "map@1": 0.8525179856115108,
1605
+ "map@5": 0.8655125899280575,
1606
+ "map@10": 0.8694287427201095,
1607
+ "mrr@1": 0.8525179856115108,
1608
+ "mrr@5": 0.8969724220623502,
1609
+ "mrr@10": 0.899004367934224,
1610
+ "num_pred": 556,
1611
+ "num_data": 556
1612
+ },
1613
+ "VisRAG_InfoVQA": {
1614
+ "hit@1": 0.7841225626740947,
1615
+ "hit@5": 0.9303621169916435,
1616
+ "hit@10": 0.9623955431754875,
1617
+ "ndcg_linear@1": 0.7841225626740947,
1618
+ "ndcg_linear@5": 0.8666397408730767,
1619
+ "ndcg_linear@10": 0.877368279907231,
1620
+ "ndcg_exponential@1": 0.7841225626740947,
1621
+ "ndcg_exponential@5": 0.8666397408730767,
1622
+ "ndcg_exponential@10": 0.877368279907231,
1623
+ "precision@1": 0.7841225626740947,
1624
+ "precision@5": 0.18607242339832863,
1625
+ "precision@10": 0.09623955431754874,
1626
+ "recall@1": 0.7841225626740947,
1627
+ "recall@5": 0.9303621169916435,
1628
+ "recall@10": 0.9623955431754875,
1629
+ "f1@1": 0.7841225626740947,
1630
+ "f1@5": 0.3101207056638813,
1631
+ "f1@10": 0.1749810078500887,
1632
+ "map@1": 0.7841225626740947,
1633
+ "map@5": 0.8450557103064067,
1634
+ "map@10": 0.8497004465667417,
1635
+ "mrr@1": 0.7841225626740947,
1636
+ "mrr@5": 0.8450557103064067,
1637
+ "mrr@10": 0.8497004465667417,
1638
+ "num_pred": 718,
1639
+ "num_data": 718
1640
+ },
1641
+ "VisRAG_PlotQA": {
1642
+ "hit@1": 0.4646581691772885,
1643
+ "hit@5": 0.7392815758980301,
1644
+ "hit@10": 0.8331402085747392,
1645
+ "ndcg_linear@1": 0.4646581691772885,
1646
+ "ndcg_linear@5": 0.6099250068225089,
1647
+ "ndcg_linear@10": 0.6403291784219023,
1648
+ "ndcg_exponential@1": 0.4646581691772885,
1649
+ "ndcg_exponential@5": 0.6099250068225089,
1650
+ "ndcg_exponential@10": 0.6403291784219023,
1651
+ "precision@1": 0.4646581691772885,
1652
+ "precision@5": 0.14785631517960598,
1653
+ "precision@10": 0.0833140208574739,
1654
+ "recall@1": 0.4646581691772885,
1655
+ "recall@5": 0.7392815758980301,
1656
+ "recall@10": 0.8331402085747392,
1657
+ "f1@1": 0.4646581691772885,
1658
+ "f1@5": 0.2464271919660101,
1659
+ "f1@10": 0.1514800379226799,
1660
+ "map@1": 0.4646581691772885,
1661
+ "map@5": 0.5669949787562766,
1662
+ "map@10": 0.57957475767441,
1663
+ "mrr@1": 0.4646581691772885,
1664
+ "mrr@5": 0.5669949787562766,
1665
+ "mrr@10": 0.57957475767441,
1666
+ "num_pred": 863,
1667
+ "num_data": 863
1668
+ },
1669
+ "ViDoSeek-page": {
1670
+ "hit@1": 0.023642732049036778,
1671
+ "hit@5": 0.4001751313485114,
1672
+ "hit@10": 0.6260945709281961,
1673
+ "ndcg_linear@1": 0.023642732049036778,
1674
+ "ndcg_linear@5": 0.21440170248700216,
1675
+ "ndcg_linear@10": 0.2875500533246049,
1676
+ "ndcg_exponential@1": 0.023642732049036778,
1677
+ "ndcg_exponential@5": 0.21440170248700216,
1678
+ "ndcg_exponential@10": 0.287550053324605,
1679
+ "precision@1": 0.023642732049036778,
1680
+ "precision@5": 0.08003502626970228,
1681
+ "precision@10": 0.06260945709281962,
1682
+ "recall@1": 0.023642732049036778,
1683
+ "recall@5": 0.4001751313485114,
1684
+ "recall@10": 0.6260945709281961,
1685
+ "f1@1": 0.023642732049036778,
1686
+ "f1@5": 0.1333917104495038,
1687
+ "f1@10": 0.1138353765323993,
1688
+ "map@1": 0.023642732049036778,
1689
+ "map@5": 0.15345884413309982,
1690
+ "map@10": 0.18370097017207349,
1691
+ "mrr@1": 0.023642732049036778,
1692
+ "mrr@5": 0.15345884413309982,
1693
+ "mrr@10": 0.18370097017207349,
1694
+ "num_pred": 1142,
1695
+ "num_data": 1142
1696
+ },
1697
+ "ViDoSeek-doc": {
1698
+ "hit@1": 0.9921190893169878,
1699
+ "hit@5": 0.9956217162872154,
1700
+ "hit@10": 0.9956217162872154,
1701
+ "ndcg_linear@1": 0.6762988908347927,
1702
+ "ndcg_linear@5": 0.8229469185937884,
1703
+ "ndcg_linear@10": 0.8026481335065712,
1704
+ "ndcg_exponential@1": 0.45071303477608193,
1705
+ "ndcg_exponential@5": 0.7032432296216546,
1706
+ "ndcg_exponential@10": 0.7282413355215829,
1707
+ "precision@1": 0.9921190893169878,
1708
+ "precision@5": 0.9084063047285464,
1709
+ "precision@10": 0.8127845884413311,
1710
+ "recall@1": 0.05853541804174077,
1711
+ "recall@5": 0.26730162656135453,
1712
+ "recall@10": 0.4682238375254491,
1713
+ "f1@1": 0.10979939672279285,
1714
+ "f1@5": 0.4046277044815002,
1715
+ "f1@10": 0.5808002886460247,
1716
+ "map@1": 0.9921190893169878,
1717
+ "map@5": 0.8995563339171047,
1718
+ "map@10": 0.7998367054060387,
1719
+ "mrr@1": 0.9921190893169878,
1720
+ "mrr@5": 0.9936514886164624,
1721
+ "mrr@10": 0.9936514886164624,
1722
+ "num_pred": 1142,
1723
+ "num_data": 1142
1724
+ },
1725
+ "MMLongBench-page": {
1726
+ "hit@1": 0.05489260143198091,
1727
+ "hit@5": 0.2649164677804296,
1728
+ "hit@10": 0.3794749403341289,
1729
+ "ndcg_linear@1": 0.05489260143198091,
1730
+ "ndcg_linear@5": 0.13059870824287584,
1731
+ "ndcg_linear@10": 0.16799933893911476,
1732
+ "ndcg_exponential@1": 0.05489260143198091,
1733
+ "ndcg_exponential@5": 0.13059870824287584,
1734
+ "ndcg_exponential@10": 0.16799933893911476,
1735
+ "precision@1": 0.05489260143198091,
1736
+ "precision@5": 0.06014319809069212,
1737
+ "precision@10": 0.048448687350835316,
1738
+ "recall@1": 0.03204057279236277,
1739
+ "recall@5": 0.1906367200818275,
1740
+ "recall@10": 0.2919593135583589,
1741
+ "f1@1": 0.038473062339410787,
1742
+ "f1@5": 0.08654065333484118,
1743
+ "f1@10": 0.07902733863744991,
1744
+ "map@1": 0.05489260143198091,
1745
+ "map@5": 0.09544550517104217,
1746
+ "map@10": 0.11231696321461494,
1747
+ "mrr@1": 0.05489260143198091,
1748
+ "mrr@5": 0.13414876690533015,
1749
+ "mrr@10": 0.14969456756449598,
1750
+ "num_pred": 838,
1751
+ "num_data": 838
1752
+ },
1753
+ "MMLongBench-doc": {
1754
+ "hit@1": 0.6599045346062052,
1755
+ "hit@5": 0.7625298329355609,
1756
+ "hit@10": 0.7971360381861575,
1757
+ "ndcg_linear@1": 0.4594272076372315,
1758
+ "ndcg_linear@5": 0.47888678810724294,
1759
+ "ndcg_linear@10": 0.4572403690751154,
1760
+ "ndcg_exponential@1": 0.3162291169451074,
1761
+ "ndcg_exponential@5": 0.3977515082488963,
1762
+ "ndcg_exponential@10": 0.4053794301498071,
1763
+ "precision@1": 0.6599045346062052,
1764
+ "precision@5": 0.5298329355608592,
1765
+ "precision@10": 0.46264916467780437,
1766
+ "recall@1": 0.0212095103625952,
1767
+ "recall@5": 0.08211773802880712,
1768
+ "recall@10": 0.13971662802131246,
1769
+ "f1@1": 0.04069885876173563,
1770
+ "f1@5": 0.13693384090532812,
1771
+ "f1@10": 0.20204454124738297,
1772
+ "map@1": 0.6599045346062052,
1773
+ "map@5": 0.4958154335719968,
1774
+ "map@10": 0.41324746498970844,
1775
+ "mrr@1": 0.6599045346062052,
1776
+ "mrr@5": 0.7001591089896579,
1777
+ "mrr@10": 0.7046870856536728,
1778
+ "num_pred": 838,
1779
+ "num_data": 838
1780
+ }
1781
+ },
1782
+ "video": {
1783
+ "DiDeMo": {
1784
+ "hit@1": 0.398406374501992,
1785
+ "hit@5": 0.6454183266932271,
1786
+ "hit@10": 0.7440239043824701,
1787
+ "ndcg_linear@1": 0.398406374501992,
1788
+ "ndcg_linear@5": 0.5320235166209488,
1789
+ "ndcg_linear@10": 0.5637579478756262,
1790
+ "ndcg_exponential@1": 0.398406374501992,
1791
+ "ndcg_exponential@5": 0.5320235166209488,
1792
+ "ndcg_exponential@10": 0.5637579478756262,
1793
+ "precision@1": 0.398406374501992,
1794
+ "precision@5": 0.1290836653386454,
1795
+ "precision@10": 0.074402390438247,
1796
+ "recall@1": 0.398406374501992,
1797
+ "recall@5": 0.6454183266932271,
1798
+ "recall@10": 0.7440239043824701,
1799
+ "f1@1": 0.398406374501992,
1800
+ "f1@5": 0.21513944223107576,
1801
+ "f1@10": 0.1352770735240855,
1802
+ "map@1": 0.398406374501992,
1803
+ "map@5": 0.49414010624169985,
1804
+ "map@10": 0.5071551097198508,
1805
+ "mrr@1": 0.398406374501992,
1806
+ "mrr@5": 0.49414010624169985,
1807
+ "mrr@10": 0.5071551097198508,
1808
+ "num_pred": 1004,
1809
+ "num_data": 1004
1810
+ },
1811
+ "MSR-VTT": {
1812
+ "hit@1": 0.46,
1813
+ "hit@5": 0.682,
1814
+ "hit@10": 0.777,
1815
+ "ndcg_linear@1": 0.46,
1816
+ "ndcg_linear@5": 0.577246738740525,
1817
+ "ndcg_linear@10": 0.6082568811617736,
1818
+ "ndcg_exponential@1": 0.46,
1819
+ "ndcg_exponential@5": 0.577246738740525,
1820
+ "ndcg_exponential@10": 0.6082568811617736,
1821
+ "precision@1": 0.46,
1822
+ "precision@5": 0.13639999999999997,
1823
+ "precision@10": 0.0777,
1824
+ "recall@1": 0.46,
1825
+ "recall@5": 0.682,
1826
+ "recall@10": 0.777,
1827
+ "f1@1": 0.46,
1828
+ "f1@5": 0.22733333333333336,
1829
+ "f1@10": 0.14127272727272727,
1830
+ "map@1": 0.46,
1831
+ "map@5": 0.5425333333333333,
1832
+ "map@10": 0.5554920634920635,
1833
+ "mrr@1": 0.46,
1834
+ "mrr@5": 0.5425333333333333,
1835
+ "mrr@10": 0.5554920634920635,
1836
+ "num_pred": 1000,
1837
+ "num_data": 1000
1838
+ },
1839
+ "MSVD": {
1840
+ "hit@1": 0.6611940298507463,
1841
+ "hit@5": 0.8850746268656716,
1842
+ "hit@10": 0.9432835820895522,
1843
+ "ndcg_linear@1": 0.6611940298507463,
1844
+ "ndcg_linear@5": 0.7846072580329928,
1845
+ "ndcg_linear@10": 0.8036925374517581,
1846
+ "ndcg_exponential@1": 0.6611940298507463,
1847
+ "ndcg_exponential@5": 0.7846072580329928,
1848
+ "ndcg_exponential@10": 0.8036925374517581,
1849
+ "precision@1": 0.6611940298507463,
1850
+ "precision@5": 0.17701492537313432,
1851
+ "precision@10": 0.0943283582089552,
1852
+ "recall@1": 0.6611940298507463,
1853
+ "recall@5": 0.8850746268656716,
1854
+ "recall@10": 0.9432835820895522,
1855
+ "f1@1": 0.6611940298507463,
1856
+ "f1@5": 0.2950248756218906,
1857
+ "f1@10": 0.17150610583446407,
1858
+ "map@1": 0.6611940298507463,
1859
+ "map@5": 0.7507462686567165,
1860
+ "map@10": 0.7587680644397062,
1861
+ "mrr@1": 0.6611940298507463,
1862
+ "mrr@5": 0.7507462686567165,
1863
+ "mrr@10": 0.7587680644397062,
1864
+ "num_pred": 670,
1865
+ "num_data": 670
1866
+ },
1867
+ "VATEX": {
1868
+ "hit@1": 0.40241179097811525,
1869
+ "hit@5": 0.6737382760160786,
1870
+ "hit@10": 0.7753461366681554,
1871
+ "ndcg_linear@1": 0.40241179097811525,
1872
+ "ndcg_linear@5": 0.5467348670052526,
1873
+ "ndcg_linear@10": 0.5796896244320889,
1874
+ "ndcg_exponential@1": 0.40241179097811525,
1875
+ "ndcg_exponential@5": 0.5467348670052526,
1876
+ "ndcg_exponential@10": 0.5796896244320889,
1877
+ "precision@1": 0.40241179097811525,
1878
+ "precision@5": 0.13474765520321572,
1879
+ "precision@10": 0.07753461366681554,
1880
+ "recall@1": 0.40241179097811525,
1881
+ "recall@5": 0.6737382760160786,
1882
+ "recall@10": 0.7753461366681554,
1883
+ "f1@1": 0.40241179097811525,
1884
+ "f1@5": 0.22457942533869293,
1885
+ "f1@10": 0.14097202484875554,
1886
+ "map@1": 0.40241179097811525,
1887
+ "map@5": 0.5044700014887598,
1888
+ "map@10": 0.5181273350489519,
1889
+ "mrr@1": 0.40241179097811525,
1890
+ "mrr@5": 0.5044700014887598,
1891
+ "mrr@10": 0.5181273350489519,
1892
+ "num_pred": 4478,
1893
+ "num_data": 4478
1894
+ },
1895
+ "YouCook2": {
1896
+ "hit@1": 0.16546083674111356,
1897
+ "hit@5": 0.3397294746775716,
1898
+ "hit@10": 0.4510852469329978,
1899
+ "ndcg_linear@1": 0.16546083674111356,
1900
+ "ndcg_linear@5": 0.2557543009200639,
1901
+ "ndcg_linear@10": 0.29139763959836457,
1902
+ "ndcg_exponential@1": 0.16546083674111356,
1903
+ "ndcg_exponential@5": 0.2557543009200639,
1904
+ "ndcg_exponential@10": 0.29139763959836457,
1905
+ "precision@1": 0.16546083674111356,
1906
+ "precision@5": 0.06794589493551431,
1907
+ "precision@10": 0.045108524693299776,
1908
+ "recall@1": 0.16546083674111356,
1909
+ "recall@5": 0.3397294746775716,
1910
+ "recall@10": 0.4510852469329978,
1911
+ "f1@1": 0.16546083674111356,
1912
+ "f1@5": 0.1132431582258572,
1913
+ "f1@10": 0.08201549944236325,
1914
+ "map@1": 0.16546083674111356,
1915
+ "map@5": 0.22801195344447936,
1916
+ "map@10": 0.24250575452997597,
1917
+ "mrr@1": 0.16546083674111356,
1918
+ "mrr@5": 0.22801195344447936,
1919
+ "mrr@10": 0.24250575452997597,
1920
+ "num_pred": 3179,
1921
+ "num_data": 3179
1922
+ },
1923
+ "QVHighlight": {
1924
+ "hit@1": 0.39519852262234534,
1925
+ "hit@5": 0.7857802400738689,
1926
+ "hit@10": 1.0,
1927
+ "ndcg_linear@1": 0.39519852262234534,
1928
+ "ndcg_linear@5": 0.5970166106855083,
1929
+ "ndcg_linear@10": 0.6657152889063322,
1930
+ "ndcg_exponential@1": 0.39519852262234534,
1931
+ "ndcg_exponential@5": 0.5970166106855083,
1932
+ "ndcg_exponential@10": 0.6657152889063322,
1933
+ "precision@1": 0.39519852262234534,
1934
+ "precision@5": 0.15715604801477376,
1935
+ "precision@10": 0.09999999999999998,
1936
+ "recall@1": 0.39519852262234534,
1937
+ "recall@5": 0.7857802400738689,
1938
+ "recall@10": 1.0,
1939
+ "f1@1": 0.39519852262234534,
1940
+ "f1@5": 0.2619267466912897,
1941
+ "f1@10": 0.18181818181818185,
1942
+ "map@1": 0.39519852262234534,
1943
+ "map@5": 0.5348107109879964,
1944
+ "map@10": 0.5628358176142109,
1945
+ "mrr@1": 0.39519852262234534,
1946
+ "mrr@5": 0.5348107109879964,
1947
+ "mrr@10": 0.5628358176142109,
1948
+ "num_pred": 1083,
1949
+ "num_data": 1083
1950
+ },
1951
+ "Charades-STA": {
1952
+ "hit@1": 0.1953232462173315,
1953
+ "hit@5": 0.5350756533700137,
1954
+ "hit@10": 1.0,
1955
+ "ndcg_linear@1": 0.1953232462173315,
1956
+ "ndcg_linear@5": 0.3669548229424312,
1957
+ "ndcg_linear@10": 0.513821217099232,
1958
+ "ndcg_exponential@1": 0.1953232462173315,
1959
+ "ndcg_exponential@5": 0.3669548229424312,
1960
+ "ndcg_exponential@10": 0.513821217099232,
1961
+ "precision@1": 0.1953232462173315,
1962
+ "precision@5": 0.10701513067400273,
1963
+ "precision@10": 0.09999999999999998,
1964
+ "recall@1": 0.1953232462173315,
1965
+ "recall@5": 0.5350756533700137,
1966
+ "recall@10": 1.0,
1967
+ "f1@1": 0.1953232462173315,
1968
+ "f1@5": 0.17835855112333796,
1969
+ "f1@10": 0.18181818181818185,
1970
+ "map@1": 0.1953232462173315,
1971
+ "map@5": 0.3119440623567171,
1972
+ "map@10": 0.37057433243815635,
1973
+ "mrr@1": 0.1953232462173315,
1974
+ "mrr@5": 0.3119440623567171,
1975
+ "mrr@10": 0.37057433243815635,
1976
+ "num_pred": 727,
1977
+ "num_data": 727
1978
+ },
1979
+ "MomentSeeker": {
1980
+ "hit@1": 0.42,
1981
+ "hit@5": 0.8972222222222223,
1982
+ "hit@10": 1.0,
1983
+ "ndcg_linear@1": 0.42,
1984
+ "ndcg_linear@5": 0.6748456963769024,
1985
+ "ndcg_linear@10": 0.712776319834093,
1986
+ "ndcg_exponential@1": 0.42,
1987
+ "ndcg_exponential@5": 0.6748456963769024,
1988
+ "ndcg_exponential@10": 0.712776319834093,
1989
+ "precision@1": 0.42,
1990
+ "precision@5": 0.19844444444444448,
1991
+ "precision@10": 0.11261111111111113,
1992
+ "recall@1": 0.39712962962962967,
1993
+ "recall@5": 0.885162037037037,
1994
+ "recall@10": 0.997523148148148,
1995
+ "f1@1": 0.4043068783068783,
1996
+ "f1@5": 0.31906429989763324,
1997
+ "f1@10": 0.1998093573093573,
1998
+ "map@1": 0.42,
1999
+ "map@5": 0.5997861111111111,
2000
+ "map@10": 0.6172150940623162,
2001
+ "mrr@1": 0.42,
2002
+ "mrr@5": 0.607425925925926,
2003
+ "mrr@10": 0.6216602733686066,
2004
+ "num_pred": 1800,
2005
+ "num_data": 1800
2006
+ },
2007
+ "K700": {
2008
+ "hit@1": 0.52,
2009
+ "hit@5": 0.736,
2010
+ "hit@10": 0.81,
2011
+ "ndcg_linear@1": 0.52,
2012
+ "ndcg_linear@5": 0.6375211963083107,
2013
+ "ndcg_linear@10": 0.6617519413591341,
2014
+ "ndcg_exponential@1": 0.52,
2015
+ "ndcg_exponential@5": 0.6375211963083107,
2016
+ "ndcg_exponential@10": 0.6617519413591341,
2017
+ "precision@1": 0.52,
2018
+ "precision@5": 0.1472,
2019
+ "precision@10": 0.081,
2020
+ "recall@1": 0.52,
2021
+ "recall@5": 0.736,
2022
+ "recall@10": 0.81,
2023
+ "f1@1": 0.52,
2024
+ "f1@5": 0.24533333333333338,
2025
+ "f1@10": 0.14727272727272725,
2026
+ "map@1": 0.52,
2027
+ "map@5": 0.6045833333333333,
2028
+ "map@10": 0.6147547619047619,
2029
+ "mrr@1": 0.52,
2030
+ "mrr@5": 0.6045833333333333,
2031
+ "mrr@10": 0.6147547619047619,
2032
+ "num_pred": 1000,
2033
+ "num_data": 1000
2034
+ },
2035
+ "SmthSmthV2": {
2036
+ "hit@1": 0.589,
2037
+ "hit@5": 0.821,
2038
+ "hit@10": 0.893,
2039
+ "ndcg_linear@1": 0.589,
2040
+ "ndcg_linear@5": 0.7154946142944708,
2041
+ "ndcg_linear@10": 0.7390605810798436,
2042
+ "ndcg_exponential@1": 0.589,
2043
+ "ndcg_exponential@5": 0.7154946142944708,
2044
+ "ndcg_exponential@10": 0.7390605810798436,
2045
+ "precision@1": 0.589,
2046
+ "precision@5": 0.16419999999999998,
2047
+ "precision@10": 0.08930000000000002,
2048
+ "recall@1": 0.589,
2049
+ "recall@5": 0.821,
2050
+ "recall@10": 0.893,
2051
+ "f1@1": 0.589,
2052
+ "f1@5": 0.27366666666666667,
2053
+ "f1@10": 0.16236363636363638,
2054
+ "map@1": 0.589,
2055
+ "map@5": 0.6800999999999999,
2056
+ "map@10": 0.6899845238095238,
2057
+ "mrr@1": 0.589,
2058
+ "mrr@5": 0.6800999999999999,
2059
+ "mrr@10": 0.6899845238095238,
2060
+ "num_pred": 1000,
2061
+ "num_data": 1000
2062
+ },
2063
+ "HMDB51": {
2064
+ "hit@1": 0.555,
2065
+ "hit@5": 0.765,
2066
+ "hit@10": 0.835,
2067
+ "ndcg_linear@1": 0.555,
2068
+ "ndcg_linear@5": 0.6674635098696148,
2069
+ "ndcg_linear@10": 0.6904162436303634,
2070
+ "ndcg_exponential@1": 0.555,
2071
+ "ndcg_exponential@5": 0.6674635098696148,
2072
+ "ndcg_exponential@10": 0.6904162436303634,
2073
+ "precision@1": 0.555,
2074
+ "precision@5": 0.153,
2075
+ "precision@10": 0.0835,
2076
+ "recall@1": 0.555,
2077
+ "recall@5": 0.765,
2078
+ "recall@10": 0.835,
2079
+ "f1@1": 0.555,
2080
+ "f1@5": 0.25500000000000006,
2081
+ "f1@10": 0.15181818181818182,
2082
+ "map@1": 0.555,
2083
+ "map@5": 0.6349333333333332,
2084
+ "map@10": 0.6446035714285714,
2085
+ "mrr@1": 0.555,
2086
+ "mrr@5": 0.6349333333333332,
2087
+ "mrr@10": 0.6446035714285714,
2088
+ "num_pred": 1000,
2089
+ "num_data": 1000
2090
+ },
2091
+ "UCF101": {
2092
+ "hit@1": 0.714,
2093
+ "hit@5": 0.9,
2094
+ "hit@10": 0.925,
2095
+ "ndcg_linear@1": 0.714,
2096
+ "ndcg_linear@5": 0.8167259122259789,
2097
+ "ndcg_linear@10": 0.824653618618315,
2098
+ "ndcg_exponential@1": 0.714,
2099
+ "ndcg_exponential@5": 0.8167259122259789,
2100
+ "ndcg_exponential@10": 0.824653618618315,
2101
+ "precision@1": 0.714,
2102
+ "precision@5": 0.18000000000000002,
2103
+ "precision@10": 0.0925,
2104
+ "recall@1": 0.714,
2105
+ "recall@5": 0.9,
2106
+ "recall@10": 0.925,
2107
+ "f1@1": 0.714,
2108
+ "f1@5": 0.3,
2109
+ "f1@10": 0.16818181818181818,
2110
+ "map@1": 0.714,
2111
+ "map@5": 0.7886166666666666,
2112
+ "map@10": 0.7918007936507936,
2113
+ "mrr@1": 0.714,
2114
+ "mrr@5": 0.7886166666666666,
2115
+ "mrr@10": 0.7918007936507936,
2116
+ "num_pred": 1000,
2117
+ "num_data": 1000
2118
+ },
2119
+ "Breakfast": {
2120
+ "hit@1": 0.302540415704388,
2121
+ "hit@5": 0.7621247113163973,
2122
+ "hit@10": 1.0,
2123
+ "ndcg_linear@1": 0.302540415704388,
2124
+ "ndcg_linear@5": 0.5350005551553058,
2125
+ "ndcg_linear@10": 0.6133736879361149,
2126
+ "ndcg_exponential@1": 0.302540415704388,
2127
+ "ndcg_exponential@5": 0.5350005551553058,
2128
+ "ndcg_exponential@10": 0.6133736879361149,
2129
+ "precision@1": 0.302540415704388,
2130
+ "precision@5": 0.15242494226327943,
2131
+ "precision@10": 0.1,
2132
+ "recall@1": 0.302540415704388,
2133
+ "recall@5": 0.7621247113163973,
2134
+ "recall@10": 1.0,
2135
+ "f1@1": 0.302540415704388,
2136
+ "f1@5": 0.25404157043879916,
2137
+ "f1@10": 0.1818181818181818,
2138
+ "map@1": 0.302540415704388,
2139
+ "map@5": 0.4606620477290223,
2140
+ "map@10": 0.49383316837127456,
2141
+ "mrr@1": 0.302540415704388,
2142
+ "mrr@5": 0.4606620477290223,
2143
+ "mrr@10": 0.49383316837127456,
2144
+ "num_pred": 433,
2145
+ "num_data": 433
2146
+ },
2147
+ "MVBench": {
2148
+ "hit@1": 0.5075,
2149
+ "hit@5": 1.0,
2150
+ "hit@10": 1.0,
2151
+ "ndcg_linear@1": 0.5075,
2152
+ "ndcg_linear@5": 0.7815510541301905,
2153
+ "ndcg_linear@10": 0.7815510541301905,
2154
+ "ndcg_exponential@1": 0.5075,
2155
+ "ndcg_exponential@5": 0.7815510541301905,
2156
+ "ndcg_exponential@10": 0.7815510541301905,
2157
+ "precision@1": 0.5075,
2158
+ "precision@5": 0.20000000000000004,
2159
+ "precision@10": 0.10000000000000002,
2160
+ "recall@1": 0.5075,
2161
+ "recall@5": 1.0,
2162
+ "recall@10": 1.0,
2163
+ "f1@1": 0.5075,
2164
+ "f1@5": 0.3333333333333333,
2165
+ "f1@10": 0.18181818181818182,
2166
+ "map@1": 0.5075,
2167
+ "map@5": 0.7074625000000001,
2168
+ "map@10": 0.7074625000000001,
2169
+ "mrr@1": 0.5075,
2170
+ "mrr@5": 0.7074625000000001,
2171
+ "mrr@10": 0.7074625000000001,
2172
+ "num_pred": 4000,
2173
+ "num_data": 4000
2174
+ },
2175
+ "Video-MME": {
2176
+ "hit@1": 0.4462962962962963,
2177
+ "hit@5": 1.0,
2178
+ "hit@10": 1.0,
2179
+ "ndcg_linear@1": 0.4462962962962963,
2180
+ "ndcg_linear@5": 0.744369697755487,
2181
+ "ndcg_linear@10": 0.744369697755487,
2182
+ "ndcg_exponential@1": 0.4462962962962963,
2183
+ "ndcg_exponential@5": 0.744369697755487,
2184
+ "ndcg_exponential@10": 0.744369697755487,
2185
+ "precision@1": 0.4462962962962963,
2186
+ "precision@5": 0.19999999999999996,
2187
+ "precision@10": 0.09999999999999998,
2188
+ "recall@1": 0.4462962962962963,
2189
+ "recall@5": 1.0,
2190
+ "recall@10": 1.0,
2191
+ "f1@1": 0.4462962962962963,
2192
+ "f1@5": 0.3333333333333334,
2193
+ "f1@10": 0.18181818181818188,
2194
+ "map@1": 0.4462962962962963,
2195
+ "map@5": 0.6585493827160493,
2196
+ "map@10": 0.6585493827160493,
2197
+ "mrr@1": 0.4462962962962963,
2198
+ "mrr@5": 0.6585493827160493,
2199
+ "mrr@10": 0.6585493827160493,
2200
+ "num_pred": 2700,
2201
+ "num_data": 2700
2202
+ },
2203
+ "NExTQA": {
2204
+ "hit@1": 0.5726296123306865,
2205
+ "hit@5": 1.0,
2206
+ "hit@10": 1.0,
2207
+ "ndcg_linear@1": 0.5726296123306865,
2208
+ "ndcg_linear@5": 0.799026160227503,
2209
+ "ndcg_linear@10": 0.799026160227503,
2210
+ "ndcg_exponential@1": 0.5726296123306865,
2211
+ "ndcg_exponential@5": 0.799026160227503,
2212
+ "ndcg_exponential@10": 0.799026160227503,
2213
+ "precision@1": 0.5726296123306865,
2214
+ "precision@5": 0.20000000000000004,
2215
+ "precision@10": 0.10000000000000002,
2216
+ "recall@1": 0.5726296123306865,
2217
+ "recall@5": 1.0,
2218
+ "recall@10": 1.0,
2219
+ "f1@1": 0.5726296123306865,
2220
+ "f1@5": 0.3333333333333333,
2221
+ "f1@10": 0.1818181818181818,
2222
+ "map@1": 0.5726296123306865,
2223
+ "map@5": 0.732224038611241,
2224
+ "map@10": 0.732224038611241,
2225
+ "mrr@1": 0.5726296123306865,
2226
+ "mrr@5": 0.7320488868130158,
2227
+ "mrr@10": 0.7320488868130158,
2228
+ "num_pred": 8564,
2229
+ "num_data": 8564
2230
+ },
2231
+ "EgoSchema": {
2232
+ "hit@1": 0.538,
2233
+ "hit@5": 1.0,
2234
+ "hit@10": 1.0,
2235
+ "ndcg_linear@1": 0.538,
2236
+ "ndcg_linear@5": 0.7801130497021113,
2237
+ "ndcg_linear@10": 0.7801130497021113,
2238
+ "ndcg_exponential@1": 0.538,
2239
+ "ndcg_exponential@5": 0.7801130497021113,
2240
+ "ndcg_exponential@10": 0.7801130497021113,
2241
+ "precision@1": 0.538,
2242
+ "precision@5": 0.2,
2243
+ "precision@10": 0.1,
2244
+ "recall@1": 0.538,
2245
+ "recall@5": 1.0,
2246
+ "recall@10": 1.0,
2247
+ "f1@1": 0.538,
2248
+ "f1@5": 0.3333333333333333,
2249
+ "f1@10": 0.18181818181818182,
2250
+ "map@1": 0.538,
2251
+ "map@5": 0.7072666666666666,
2252
+ "map@10": 0.7072666666666666,
2253
+ "mrr@1": 0.538,
2254
+ "mrr@5": 0.7072666666666666,
2255
+ "mrr@10": 0.7072666666666666,
2256
+ "num_pred": 500,
2257
+ "num_data": 500
2258
+ },
2259
+ "ActivityNetQA": {
2260
+ "hit@1": 0.718,
2261
+ "hit@5": 1.0,
2262
+ "hit@10": 1.0,
2263
+ "ndcg_linear@1": 0.718,
2264
+ "ndcg_linear@5": 0.895922190507151,
2265
+ "ndcg_linear@10": 0.895922190507151,
2266
+ "ndcg_exponential@1": 0.718,
2267
+ "ndcg_exponential@5": 0.895922190507151,
2268
+ "ndcg_exponential@10": 0.895922190507151,
2269
+ "precision@1": 0.718,
2270
+ "precision@5": 0.20000000000000004,
2271
+ "precision@10": 0.10000000000000002,
2272
+ "recall@1": 0.718,
2273
+ "recall@5": 1.0,
2274
+ "recall@10": 1.0,
2275
+ "f1@1": 0.718,
2276
+ "f1@5": 0.3333333333333333,
2277
+ "f1@10": 0.18181818181818182,
2278
+ "map@1": 0.718,
2279
+ "map@5": 0.859,
2280
+ "map@10": 0.859,
2281
+ "mrr@1": 0.718,
2282
+ "mrr@5": 0.859,
2283
+ "mrr@10": 0.859,
2284
+ "num_pred": 1000,
2285
+ "num_data": 1000
2286
+ }
2287
+ }
2288
+ }
2289
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:091aa7594dc2fcfbfa06b9e3c22a5f0562ac14f30375c13af7309407a0e67b8a
3
+ size 11420371
tokenizer_config.json ADDED
@@ -0,0 +1,145 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "151643": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "151644": {
13
+ "content": "<|im_start|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "151645": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "151646": {
29
+ "content": "<|object_ref_start|>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "151647": {
37
+ "content": "<|object_ref_end|>",
38
+ "lstrip": false,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ },
44
+ "151648": {
45
+ "content": "<|box_start|>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false,
50
+ "special": true
51
+ },
52
+ "151649": {
53
+ "content": "<|box_end|>",
54
+ "lstrip": false,
55
+ "normalized": false,
56
+ "rstrip": false,
57
+ "single_word": false,
58
+ "special": true
59
+ },
60
+ "151650": {
61
+ "content": "<|quad_start|>",
62
+ "lstrip": false,
63
+ "normalized": false,
64
+ "rstrip": false,
65
+ "single_word": false,
66
+ "special": true
67
+ },
68
+ "151651": {
69
+ "content": "<|quad_end|>",
70
+ "lstrip": false,
71
+ "normalized": false,
72
+ "rstrip": false,
73
+ "single_word": false,
74
+ "special": true
75
+ },
76
+ "151652": {
77
+ "content": "<|vision_start|>",
78
+ "lstrip": false,
79
+ "normalized": false,
80
+ "rstrip": false,
81
+ "single_word": false,
82
+ "special": true
83
+ },
84
+ "151653": {
85
+ "content": "<|vision_end|>",
86
+ "lstrip": false,
87
+ "normalized": false,
88
+ "rstrip": false,
89
+ "single_word": false,
90
+ "special": true
91
+ },
92
+ "151654": {
93
+ "content": "<|vision_pad|>",
94
+ "lstrip": false,
95
+ "normalized": false,
96
+ "rstrip": false,
97
+ "single_word": false,
98
+ "special": true
99
+ },
100
+ "151655": {
101
+ "content": "<|image_pad|>",
102
+ "lstrip": false,
103
+ "normalized": false,
104
+ "rstrip": false,
105
+ "single_word": false,
106
+ "special": true
107
+ },
108
+ "151656": {
109
+ "content": "<|video_pad|>",
110
+ "lstrip": false,
111
+ "normalized": false,
112
+ "rstrip": false,
113
+ "single_word": false,
114
+ "special": true
115
+ }
116
+ },
117
+ "additional_special_tokens": [
118
+ "<|im_start|>",
119
+ "<|im_end|>",
120
+ "<|object_ref_start|>",
121
+ "<|object_ref_end|>",
122
+ "<|box_start|>",
123
+ "<|box_end|>",
124
+ "<|quad_start|>",
125
+ "<|quad_end|>",
126
+ "<|vision_start|>",
127
+ "<|vision_end|>",
128
+ "<|vision_pad|>",
129
+ "<|image_pad|>",
130
+ "<|video_pad|>"
131
+ ],
132
+ "bos_token": null,
133
+ "chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}",
134
+ "clean_up_tokenization_spaces": false,
135
+ "eos_token": "<|im_end|>",
136
+ "errors": "replace",
137
+ "extra_special_tokens": {},
138
+ "model_max_length": 32768,
139
+ "pad_token": "<|endoftext|>",
140
+ "padding_side": "left",
141
+ "processor_class": "Qwen2VLProcessor",
142
+ "split_special_tokens": false,
143
+ "tokenizer_class": "Qwen2Tokenizer",
144
+ "unk_token": null
145
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff