--- base_model: meta-llama/Meta-Llama-3.1-8B-Instruct library_name: peft license: llama3.1 tags: - generated_from_trainer model-index: - name: models/loras2/40a0412a-574f-442e-8a35-32dd97008a01 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: meta-llama/Meta-Llama-3.1-8B-Instruct base_model_config: meta-llama/Meta-Llama-3.1-8B-Instruct bf16: true dataset_processes: 8 datasets: - path: /tmp/train.jsonl type: field_instruction: input field_output: output field_system: system format: '{instruction}' no_input_format: '{instruction}' system_prompt: '' flash_attention: true fp16: false fsdp: [] gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false is_llama_derived_model: true learning_rate: 0.0002 logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_r: 8 lora_target_linear: true lora_target_modules: - gate_proj - down_proj - up_proj - q_proj - v_proj - k_proj - o_proj lr_scheduler: cosine micro_batch_size: 2 model_type: LlamaForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: /models/loras2/40a0412a-574f-442e-8a35-32dd97008a01 pad_to_sequence_len: true sample_packing: true save_safetensors: true save_strategy: 'no' sequence_len: 8192 special_tokens: eos_token: <|eot_id|> pad_token: <|end_of_text|> strict: true tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false val_set_size: 0 wandb_project: OP Method wandb_run_id: auth-12-1-24-gpt4o-relabeled-llama31 warmup_steps: 10 weight_decay: 0 ```

[Visualize in Weights & Biases](https://wandb.ai/openpipe-team/OP%20Method/runs/auth-12-1-24-gpt4o-relabeled-llama31) # models/loras2/40a0412a-574f-442e-8a35-32dd97008a01 This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 1 ### Training results ### Framework versions - PEFT 0.11.1 - Transformers 4.43.1 - Pytorch 2.2.2+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1