| """ Moss model configuration""" | |
| from transformers.utils import logging | |
| from transformers.configuration_utils import PretrainedConfig | |
| logger = logging.get_logger(__name__) | |
| class MossConfig(PretrainedConfig): | |
| r""" | |
| This is the configuration class to store the configuration of a [`MossModel`]. It is used to instantiate a | |
| Moss model according to the specified arguments, defining the model architecture. Configuration objects | |
| inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from | |
| [`PretrainedConfig`] for more information. | |
| Args: | |
| vocab_size (`int`, *optional*, defaults to 92494): | |
| Vocabulary size of the Moss model. Defines the number of different tokens that can be represented by the | |
| `inputs_ids` passed when calling [`MossModel`] | |
| hidden_size (`int`, *optional*, defaults to 4096): | |
| Dimension of the hidden representations. | |
| intermediate_size (`int`, *optional*, defaults to 11008): | |
| Dimension of the MLP representations. | |
| num_hidden_layers (`int`, *optional*, defaults to 32): | |
| Number of hidden layers in the Transformer encoder. | |
| num_attention_heads (`int`, *optional*, defaults to 32): | |
| Number of attention heads for each attention layer in the Transformer encoder. | |
| hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): | |
| The non-linear activation function (function or string) in the decoder. | |
| max_position_embeddings (`int`, *optional*, defaults to 2048): | |
| The maximum sequence length that this model might ever be used with. Typically set this to something large | |
| just in case (e.g., 512 or 1024 or 2048). | |
| initializer_range (`float`, *optional*, defaults to 0.02): | |
| The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
| rms_norm_eps (`float`, *optional*, defaults to 1e-05): | |
| The epsilon used by the rms normalization layers. | |
| use_cache (`bool`, *optional*, defaults to `True`): | |
| Whether or not the model should return the last key/values attentions (not used by all models). Only | |
| relevant if `config.is_decoder=True`. | |
| tie_word_embeddings(`bool`, *optional*, defaults to `False`): | |
| Whether to tie weight embeddings | |
| Example: | |
| ```python | |
| >>> from transformers import MossModel, MossConfig | |
| >>> # Initializing a Moss-7b style configuration | |
| >>> configuration = MossConfig() | |
| >>> # Initializing a model from the Moss-7b style configuration | |
| >>> model = MossModel(configuration) | |
| >>> # Accessing the model configuration | |
| >>> configuration = model.config | |
| ```""" | |
| model_type = "moss" | |
| keys_to_ignore_at_inference = ["past_key_values"] | |
| def __init__( | |
| self, | |
| vocab_size=92494, | |
| hidden_size=4096, | |
| intermediate_size=11008, | |
| num_hidden_layers=32, | |
| num_attention_heads=32, | |
| hidden_act="silu", | |
| max_position_embeddings=2048, | |
| initializer_range=0.02, | |
| rms_norm_eps=1e-05, | |
| use_cache=True, | |
| pad_token_id=0, | |
| bos_token_id=1, | |
| eos_token_id=2, | |
| tie_word_embeddings=False, | |
| **kwargs, | |
| ): | |
| self.vocab_size = vocab_size | |
| self.max_position_embeddings = max_position_embeddings | |
| self.hidden_size = hidden_size | |
| self.intermediate_size = intermediate_size | |
| self.num_hidden_layers = num_hidden_layers | |
| self.num_attention_heads = num_attention_heads | |
| self.hidden_act = hidden_act | |
| self.initializer_range = initializer_range | |
| self.rms_norm_eps = rms_norm_eps | |
| self.use_cache = use_cache | |
| super().__init__( | |
| pad_token_id=pad_token_id, | |
| bos_token_id=bos_token_id, | |
| eos_token_id=eos_token_id, | |
| tie_word_embeddings=tie_word_embeddings, | |
| **kwargs, | |
| ) | |