Jeronymous commited on
Commit
15dffa4
verified
1 Parent(s): 902759b

Update README

Browse files
Files changed (1) hide show
  1. README.md +176 -0
README.md CHANGED
@@ -26,3 +26,179 @@ widget:
26
  # top_k: null
27
  # max_new_tokens: null
28
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
  # top_k: null
27
  # max_new_tokens: null
28
  ---
29
+
30
+ # Model Card for Lucie-7B
31
+
32
+ <!-- inspired from the following template:
33
+ https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1
34
+ -->
35
+
36
+ * [Model Description](#model-description)
37
+ <!-- * [Uses](#uses) -->
38
+ * [Example code in python](#example-code-in-python)
39
+ * [Sentence completion](#sentence-completion)
40
+ * [Load a checkpoint](#load-a-checkpoint)
41
+ * [Training Details](#training-details)
42
+ * [Training Data](#training-data)
43
+ * [Training Procedure](#training-procedure)
44
+ <!-- * [Evaluation](#evaluation) -->
45
+ * [Acknowledgements](#acknowledgements)
46
+ * [Contact](#contact)
47
+
48
+ ## Model Description
49
+
50
+ Lucie-7B is a pretrained 7B parameter causal language model built by [LINAGORA](https://labs.linagora.com/) and [OpenLLM-France](https://github.com/OpenLLM-France),
51
+ available under the [Apache 2.0 license](https://www.apache.org/licenses/LICENSE-2.0).
52
+
53
+ Lucie-7B was trained on 3 trillion tokens of multilingual data, including
54
+ English聽(33.2%),
55
+ French聽(32.4%),
56
+ German聽(6.9%),
57
+ Spanish聽(6.6%),
58
+ Italian聽(3.8%),
59
+ and parallel data from those languages聽(2.5%),
60
+ as well as several programming languages聽(14.7%).
61
+
62
+ ## Example code in python
63
+
64
+ ### Sentence completion
65
+
66
+ Load the model (quantized version on GPU if possible, for efficient inference):
67
+ ```python
68
+ import transformers
69
+
70
+ model_name = "OpenLLM-France/Lucie-7B"
71
+
72
+ tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
73
+ model = transformers.AutoModelForCausalLM.from_pretrained(model_name,
74
+ device_map="auto",
75
+ load_in_4bit=True # For efficient inference, if quantization is supported by the GPU card
76
+ )
77
+ ```
78
+
79
+ Wrap the model in a text generation pipeline, and prepare some generation parameters:
80
+ ```
81
+ pipeline = transformers.pipeline("text-generation", model=model, tokenizer=tokenizer)
82
+
83
+ generation_kwargs = dict(
84
+ num_return_sequences=1, # Number of variants to generate.
85
+ return_full_text= False, # Do not include the prompt in the generated text.
86
+ do_sample=True,
87
+ temperature=1.0, top_p=1, top_k=None, # Sampling parameters.
88
+ max_new_tokens=200, # Maximum length for the output text (in number of tokens).
89
+ )
90
+ ```
91
+
92
+ Try 1-shot question answering:
93
+ ```python
94
+ prompt = """\
95
+ Quelle est la capitale de l'Espagne ? Madrid\n\
96
+ Quelle est la capitale de la France ?\
97
+ """
98
+ completions = pipeline(prompt, **generation_kwargs)
99
+ for completion in completions:
100
+ print(prompt + " [鈥" + completion['generated_text'])
101
+ ```
102
+ This will print something like:
103
+ ```
104
+ Quelle est la capitale de l'Espagne ? Madrid
105
+ Quelle est la capitale de la France ? [鈥 Paris
106
+ Quelle est la capitale de l'Italie? Rome
107
+ Quelle est la capitale de la Grande-Bretagne? Londres
108
+ Quelle est la capitale de la Suisse? Berne
109
+ Quelle est la capitale du Portugal? Lisbonne
110
+ Quelle est la capitale de l'Alg茅rie? Alger
111
+ ...
112
+ ```
113
+
114
+ If running on GPU (`cuda` device), you will need at least 6GB of VRAM to run inference using 4bit quantization (16GB of VRAM without 4bit quantization).
115
+
116
+ ### Load a checkpoint
117
+
118
+ Checkpoints at several training steps are available under revision tags,
119
+ every 5000 steps during the first 25000 steps, and then every 25000 steps.
120
+
121
+ Intermediate checkpoints can be loaded using the `revision` parameter:
122
+ ```python
123
+ model = transformers.AutoModelForCausalLM.from_pretrained(model_name,
124
+ revision="step0400000",
125
+ ...
126
+ )
127
+ ```
128
+ where `revision` can be one of: "`step0005000`", "`step0010000`", ..., "`step0025000`", "`step0050000`", "`step0075000`", ...
129
+
130
+ ## Training Details
131
+
132
+ ### Training Data
133
+
134
+ The training dataset will be made available soon.
135
+ <!-- at [OpenLLM-France/Lucie-Training-Dataset](https://huggingface.co/datasets/OpenLLM-France/Lucie-Training-Dataset)
136
+ and described in ["The Lucie Training Dataset" (2024/5)](https://arxiv.org/abs/xxxx.xxxxx). -->
137
+
138
+ ### Training Procedure
139
+
140
+ The training code is available at [https://github.com/OpenLLM-France/Lucie-Training](https://github.com/OpenLLM-France/Lucie-Training),
141
+ and this based on [this fork of Megatron-DeepSpeed](https://github.com/OpenLLM-France/Megatron-DeepSpeed).
142
+
143
+ Lucie-7B is a causal decoder-only model trained on a causal language modeling task (i.e., predict the next token).
144
+
145
+ It was trained on 512 H100 80GB GPUs for about <<TODO>> GPU hours on [Jean Zay supercomputer](http://www.idris.fr/eng/jean-zay/jean-zay-presentation-eng.html).
146
+
147
+ #### Neural Network Architecture
148
+
149
+ Lucie-7B has the same neural network architecture as Llama3.
150
+ It has exactly 6聽706聽958聽336 free parameters,
151
+ with the following hyperparameters:
152
+ | **Hyperparameter** | **Value** |
153
+ |---------------------------|---------|
154
+ | Vocabulary size (\# tokens)| 65聽024|
155
+ | ROPE theta | 500聽000|
156
+ | \# transformer blocks | 32|
157
+ | \# attention heads | 32|
158
+ | \# key-value heads | 8|
159
+ | Hidden size | 4聽096|
160
+ | Feed-Forward hidden size | 12聽288|
161
+ | Activation | `silu`|
162
+ | RMS norm epsilon | 1e-5|
163
+
164
+ #### Training Hyperparameters
165
+
166
+ Training hyperparameters in torch/Megatron-DeepSpeed were the following:
167
+ | **Hyperparameter** | **Value** |
168
+ |------------------------|------------|
169
+ | Optimizer | `AdamW` |
170
+ | Precision | `bfloat16` |
171
+ | Initial batch size | 256 |
172
+ | Final batch size | 1024 |
173
+ | Batch size rampup | by steps of 64 over 10M samples |
174
+ | Context length | 4096 |
175
+ | Learning rate schedule | warmup + cosine annealing |
176
+ | Maximum Learning rate | 3e-4 |
177
+ | Final Learning rate | 3e-5 |
178
+ | Weight decay | 0.1 |
179
+ | Dropout | _ |
180
+ | Gradient clipping | 1 |
181
+ | Initializer range | 0.2 |
182
+ | Tensor Parallelism (with 512 GPUs) | 4 |
183
+ | Pipeline Parallelism (with 512 GPUs) | 4 |
184
+ | Data Parallelism (with 512 GPUs) | 32 |
185
+
186
+
187
+ ## Acknowledgements
188
+
189
+ This work was performed using HPC resources from GENCI鈥揑DRIS (Grant 2024-GC011015444).
190
+
191
+ Lucie-7B was created by members of [LINAGORA](https://labs.linagora.com/) and OpenLLM-France community, including in alphabetical order:
192
+ Christophe Cerisara (LORIA),
193
+ Evan Dufraisse (CEA),
194
+ Julie Hunter (LINAGORA),
195
+ Jean-Pierre Lorr茅 (LINAGORA),
196
+ J茅r么me Louradour (LINAGORA),
197
+ Michel-Marie Maudet (LINAGORA),
198
+ Olivier Gouvert (LINAGORA),
199
+ Pierre-Carl Langlais (OpSci),
200
+ Yaya Sy (LORIA).
201
+
202
+ ## Contact
203
+
204