File size: 34,678 Bytes
7ee5b6e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 |
# --------------------------------------------------------
# InternImage
# Copyright (c) 2025 OpenGVLab
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------
from dataclasses import dataclass
from typing import Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
from timm.models.layers import DropPath, trunc_normal_
from torch import nn
from transformers import PreTrainedModel
from transformers.modeling_outputs import ModelOutput
from .configuration_internimage import InternImageConfig
from .dcnv3 import DCNv3, DCNv3_pytorch, has_cuda_kernel
from .dcnv3_func import dcnv3_core_pytorch
@dataclass
class BackboneOutput(ModelOutput):
"""
Base class for outputs of backbones.
"""
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
pooler_output: Optional[torch.FloatTensor] = None
last_hidden_state: Optional[torch.FloatTensor] = None
logits: Optional[torch.FloatTensor] = None
loss: Optional[torch.FloatTensor] = None
class to_channels_first(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
return x.permute(0, 3, 1, 2)
class to_channels_last(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
return x.permute(0, 2, 3, 1)
def build_norm_layer(dim,
norm_layer,
in_format='channels_last',
out_format='channels_last',
eps=1e-6):
layers = []
if norm_layer == 'BN':
if in_format == 'channels_last':
layers.append(to_channels_first())
layers.append(nn.BatchNorm2d(dim))
if out_format == 'channels_last':
layers.append(to_channels_last())
elif norm_layer == 'LN':
if in_format == 'channels_first':
layers.append(to_channels_last())
layers.append(nn.LayerNorm(dim, eps=eps))
if out_format == 'channels_first':
layers.append(to_channels_first())
else:
raise NotImplementedError(
f'build_norm_layer does not support {norm_layer}')
return nn.Sequential(*layers)
def build_act_layer(act_layer):
if act_layer == 'ReLU':
return nn.ReLU(inplace=True)
elif act_layer == 'SiLU':
return nn.SiLU(inplace=True)
elif act_layer == 'GELU':
return nn.GELU()
raise NotImplementedError(f'build_act_layer does not support {act_layer}')
class CrossAttention(nn.Module):
r""" Cross Attention Module
Args:
dim (int): Number of input channels.
num_heads (int): Number of attention heads. Default: 8
qkv_bias (bool, optional): If True, add a learnable bias to q, k, v.
Default: False.
qk_scale (float | None, optional): Override default qk scale of
head_dim ** -0.5 if set. Default: None.
attn_drop (float, optional): Dropout ratio of attention weight.
Default: 0.0
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
attn_head_dim (int, optional): Dimension of attention head.
out_dim (int, optional): Dimension of output.
"""
def __init__(self,
dim,
num_heads=8,
qkv_bias=False,
qk_scale=None,
attn_drop=0.,
proj_drop=0.,
attn_head_dim=None,
out_dim=None):
super().__init__()
if out_dim is None:
out_dim = dim
self.num_heads = num_heads
head_dim = dim // num_heads
if attn_head_dim is not None:
head_dim = attn_head_dim
all_head_dim = head_dim * self.num_heads
self.scale = qk_scale or head_dim ** -0.5
assert all_head_dim == dim
self.q = nn.Linear(dim, all_head_dim, bias=False)
self.k = nn.Linear(dim, all_head_dim, bias=False)
self.v = nn.Linear(dim, all_head_dim, bias=False)
if qkv_bias:
self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
self.k_bias = nn.Parameter(torch.zeros(all_head_dim))
self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
else:
self.q_bias = None
self.k_bias = None
self.v_bias = None
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(all_head_dim, out_dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x, k=None, v=None):
B, N, C = x.shape
N_k = k.shape[1]
N_v = v.shape[1]
q_bias, k_bias, v_bias = None, None, None
if self.q_bias is not None:
q_bias = self.q_bias
k_bias = self.k_bias
v_bias = self.v_bias
q = F.linear(input=x, weight=self.q.weight, bias=q_bias)
q = q.reshape(B, N, 1, self.num_heads,
-1).permute(2, 0, 3, 1,
4).squeeze(0) # (B, N_head, N_q, dim)
k = F.linear(input=k, weight=self.k.weight, bias=k_bias)
k = k.reshape(B, N_k, 1, self.num_heads, -1).permute(2, 0, 3, 1,
4).squeeze(0)
v = F.linear(input=v, weight=self.v.weight, bias=v_bias)
v = v.reshape(B, N_v, 1, self.num_heads, -1).permute(2, 0, 3, 1,
4).squeeze(0)
q = q * self.scale
attn = (q @ k.transpose(-2, -1)) # (B, N_head, N_q, N_k)
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
x = self.proj(x)
x = self.proj_drop(x)
return x
class AttentiveBlock(nn.Module):
r"""Attentive Block
Args:
dim (int): Number of input channels.
num_heads (int): Number of attention heads. Default: 8
qkv_bias (bool, optional): If True, add a learnable bias to q, k, v.
Default: False.
qk_scale (float | None, optional): Override default qk scale of
head_dim ** -0.5 if set. Default: None.
drop (float, optional): Dropout rate. Default: 0.0.
attn_drop (float, optional): Attention dropout rate. Default: 0.0.
drop_path (float | tuple[float], optional): Stochastic depth rate.
Default: 0.0.
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm.
attn_head_dim (int, optional): Dimension of attention head. Default: None.
out_dim (int, optional): Dimension of output. Default: None.
"""
def __init__(self,
dim,
num_heads,
qkv_bias=False,
qk_scale=None,
drop=0.,
attn_drop=0.,
drop_path=0.,
norm_layer='LN',
attn_head_dim=None,
out_dim=None):
super().__init__()
self.norm1_q = build_norm_layer(dim, norm_layer, eps=1e-6)
self.norm1_k = build_norm_layer(dim, norm_layer, eps=1e-6)
self.norm1_v = build_norm_layer(dim, norm_layer, eps=1e-6)
self.cross_dcn = CrossAttention(dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
proj_drop=drop,
attn_head_dim=attn_head_dim,
out_dim=out_dim)
self.drop_path = DropPath(
drop_path) if drop_path > 0. else nn.Identity()
def forward(self,
x_q,
x_kv,
pos_q,
pos_k,
bool_masked_pos,
rel_pos_bias=None):
x_q = self.norm1_q(x_q + pos_q)
x_k = self.norm1_k(x_kv + pos_k)
x_v = self.norm1_v(x_kv)
x = self.cross_dcn(x_q, k=x_k, v=x_v)
return x
class AttentionPoolingBlock(AttentiveBlock):
def forward(self, x):
x_q = x.mean(1, keepdim=True)
x_kv = x
pos_q, pos_k = 0, 0
x = super().forward(x_q, x_kv, pos_q, pos_k,
bool_masked_pos=None,
rel_pos_bias=None)
x = x.squeeze(1)
return x
class StemLayer(nn.Module):
r"""Stem layer of InternImage
Args:
in_chans (int): number of input channels
out_chans (int): number of output channels
act_layer (str): activation layer
norm_layer (str): normalization layer
"""
def __init__(self,
in_chans=3,
out_chans=96,
act_layer='GELU',
norm_layer='BN'):
super().__init__()
self.conv1 = nn.Conv2d(in_chans,
out_chans // 2,
kernel_size=3,
stride=2,
padding=1)
self.norm1 = build_norm_layer(out_chans // 2, norm_layer,
'channels_first', 'channels_first')
self.act = build_act_layer(act_layer)
self.conv2 = nn.Conv2d(out_chans // 2,
out_chans,
kernel_size=3,
stride=2,
padding=1)
self.norm2 = build_norm_layer(out_chans, norm_layer, 'channels_first',
'channels_last')
def forward(self, x):
x = self.conv1(x)
x = self.norm1(x)
x = self.act(x)
x = self.conv2(x)
x = self.norm2(x)
return x
class DownsampleLayer(nn.Module):
r"""Downsample layer of InternImage
Args:
channels (int): number of input channels
norm_layer (str): normalization layer
"""
def __init__(self, channels, norm_layer='LN'):
super().__init__()
self.conv = nn.Conv2d(channels,
2 * channels,
kernel_size=3,
stride=2,
padding=1,
bias=False)
self.norm = build_norm_layer(2 * channels, norm_layer,
'channels_first', 'channels_last')
def forward(self, x):
x = self.conv(x.permute(0, 3, 1, 2))
x = self.norm(x)
return x
class MLPLayer(nn.Module):
r"""MLP layer of InternImage
Args:
in_features (int): number of input features
hidden_features (int): number of hidden features
out_features (int): number of output features
act_layer (str): activation layer
drop (float): dropout rate
"""
def __init__(self,
in_features,
hidden_features=None,
out_features=None,
act_layer='GELU',
drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = build_act_layer(act_layer)
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class InternImageLayer(nn.Module):
r"""Basic layer of InternImage
Args:
core_op (nn.Module): core operation of InternImage
channels (int): number of input channels
groups (list): Groups of each block.
mlp_ratio (float): ratio of mlp hidden features to input channels
drop (float): dropout rate
drop_path (float): drop path rate
act_layer (str): activation layer
norm_layer (str): normalization layer
post_norm (bool): whether to use post normalization
layer_scale (float): layer scale
offset_scale (float): offset scale
with_cp (bool): whether to use checkpoint
"""
def __init__(self,
core_op,
channels,
groups,
mlp_ratio=4.,
drop=0.,
drop_path=0.,
act_layer='GELU',
norm_layer='LN',
post_norm=False,
layer_scale=None,
offset_scale=1.0,
with_cp=False,
dw_kernel_size=None, # for InternImage-H/G
res_post_norm=False, # for InternImage-H/G
center_feature_scale=False, # for InternImage-H/G
remove_center=False, # for InternImage-H/G
):
super().__init__()
self.channels = channels
self.groups = groups
self.mlp_ratio = mlp_ratio
self.with_cp = with_cp
self.norm1 = build_norm_layer(channels, 'LN')
self.post_norm = post_norm
self.dcn = core_op(
channels=channels,
kernel_size=3,
stride=1,
pad=1,
dilation=1,
group=groups,
offset_scale=offset_scale,
act_layer=act_layer,
norm_layer=norm_layer,
dw_kernel_size=dw_kernel_size, # for InternImage-H/G
center_feature_scale=center_feature_scale, # for InternImage-H/G
remove_center=remove_center, # for InternImage-H/G
)
self.drop_path = DropPath(drop_path) if drop_path > 0. \
else nn.Identity()
self.norm2 = build_norm_layer(channels, 'LN')
self.mlp = MLPLayer(in_features=channels,
hidden_features=int(channels * mlp_ratio),
act_layer=act_layer,
drop=drop)
self.layer_scale = layer_scale is not None
if self.layer_scale:
self.layer_scale1 = nn.Parameter(layer_scale * torch.ones(channels),
requires_grad=True)
self.layer_scale2 = nn.Parameter(layer_scale * torch.ones(channels),
requires_grad=True)
self.res_post_norm = res_post_norm
if res_post_norm:
self.res_post_norm1 = build_norm_layer(channels, 'LN')
self.res_post_norm2 = build_norm_layer(channels, 'LN')
def forward(self, x):
def _inner_forward(x):
if not self.layer_scale:
if self.post_norm:
x = x + self.drop_path(self.norm1(self.dcn(x)))
x = x + self.drop_path(self.norm2(self.mlp(x)))
elif self.res_post_norm: # for InternImage-H/G
x = x + self.drop_path(self.res_post_norm1(self.dcn(self.norm1(x))))
x = x + self.drop_path(self.res_post_norm2(self.mlp(self.norm2(x))))
else:
x = x + self.drop_path(self.dcn(self.norm1(x)))
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
if self.post_norm:
x = x + self.drop_path(self.layer_scale1 * self.norm1(self.dcn(x)))
x = x + self.drop_path(self.layer_scale2 * self.norm2(self.mlp(x)))
else:
x = x + self.drop_path(self.layer_scale1 * self.dcn(self.norm1(x)))
x = x + self.drop_path(self.layer_scale2 * self.mlp(self.norm2(x)))
return x
if self.with_cp and x.requires_grad:
x = checkpoint.checkpoint(_inner_forward, x)
else:
x = _inner_forward(x)
return x
class InternImageBlock(nn.Module):
r"""Block of InternImage
Args:
core_op (nn.Module): core operation of InternImage
channels (int): number of input channels
depths (list): Depth of each block.
groups (list): Groups of each block.
mlp_ratio (float): ratio of mlp hidden features to input channels
drop (float): dropout rate
drop_path (float): drop path rate
act_layer (str): activation layer
norm_layer (str): normalization layer
post_norm (bool): whether to use post normalization
layer_scale (float): layer scale
offset_scale (float): offset scale
with_cp (bool): whether to use checkpoint
"""
def __init__(self,
core_op,
channels,
depth,
groups,
downsample=True,
mlp_ratio=4.,
drop=0.,
drop_path=0.,
act_layer='GELU',
norm_layer='LN',
post_norm=False,
offset_scale=1.0,
layer_scale=None,
with_cp=False,
dw_kernel_size=None, # for InternImage-H/G
post_norm_block_ids=None, # for InternImage-H/G
res_post_norm=False, # for InternImage-H/G
center_feature_scale=False, # for InternImage-H/G
remove_center=False, # for InternImage-H/G
):
super().__init__()
self.channels = channels
self.depth = depth
self.post_norm = post_norm
self.center_feature_scale = center_feature_scale
self.blocks = nn.ModuleList([
InternImageLayer(
core_op=core_op,
channels=channels,
groups=groups,
mlp_ratio=mlp_ratio,
drop=drop,
drop_path=drop_path[i] if isinstance(
drop_path, list) else drop_path,
act_layer=act_layer,
norm_layer=norm_layer,
post_norm=post_norm,
layer_scale=layer_scale,
offset_scale=offset_scale,
with_cp=with_cp,
dw_kernel_size=dw_kernel_size, # for InternImage-H/G
res_post_norm=res_post_norm, # for InternImage-H/G
center_feature_scale=center_feature_scale, # for InternImage-H/G
remove_center=remove_center, # for InternImage-H/G
) for i in range(depth)
])
if not self.post_norm or center_feature_scale:
self.norm = build_norm_layer(channels, 'LN')
self.post_norm_block_ids = post_norm_block_ids
if post_norm_block_ids is not None: # for InternImage-H/G
self.post_norms = nn.ModuleList(
[build_norm_layer(channels, 'LN', eps=1e-6) for _ in post_norm_block_ids]
)
self.downsample = DownsampleLayer(
channels=channels, norm_layer=norm_layer) if downsample else None
def forward(self, x, return_wo_downsample=False):
for i, blk in enumerate(self.blocks):
x = blk(x)
if (self.post_norm_block_ids is not None) and (i in self.post_norm_block_ids):
index = self.post_norm_block_ids.index(i)
x = self.post_norms[index](x) # for InternImage-H/G
if not self.post_norm or self.center_feature_scale:
x = self.norm(x)
if return_wo_downsample:
x_ = x
if self.downsample is not None:
x = self.downsample(x)
if return_wo_downsample:
return x, x_
return x
class InternImage(nn.Module):
r"""InternImage
A PyTorch impl of : `InternImage: Exploring Large-Scale Vision Foundation Models with Deformable Convolutions` -
https://arxiv.org/pdf/2103.14030
Args:
core_op (str): Core operator. Default: 'DCNv3'
channels (int): Number of the first stage. Default: 64
depths (list): Depth of each block. Default: [3, 4, 18, 5]
groups (list): Groups of each block. Default: [3, 6, 12, 24]
num_classes (int): Number of classes. Default: 1000
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
drop_rate (float): Probability of an element to be zeroed. Default: 0.
drop_path_rate (float): Stochastic depth rate. Default: 0.
act_layer (str): Activation layer. Default: 'GELU'
norm_layer (str): Normalization layer. Default: 'LN'
layer_scale (float): The initial value of layer scale. Default: None
cls_scale (float): Whether to use class scale. Default: 1.5
with_cp (bool): Use gradient checkpointing or not. Default: False
dw_kernel_size (int): Size of the dwconv. Default: None
use_clip_projector (bool): Whether to use clip projector. Default: False
level2_post_norm (bool): Whether to use level2 post norm. Default: False
level2_post_norm_block_ids (list): Indexes of post norm blocks. Default: None
res_post_norm (bool): Whether to use res post norm. Default: False
center_feature_scale (bool): Whether to use center feature scale. Default: False
"""
def __init__(self,
core_op='DCNv3',
channels=64,
depths=[3, 4, 18, 5],
groups=[3, 6, 12, 24],
num_classes=1000,
mlp_ratio=4.,
drop_rate=0.,
drop_path_rate=0.2,
drop_path_type='linear',
act_layer='GELU',
norm_layer='LN',
layer_scale=None,
offset_scale=1.0,
post_norm=False,
cls_scale=1.5,
with_cp=False,
dw_kernel_size=None, # for InternImage-H/G
use_clip_projector=False, # for InternImage-H/G
level2_post_norm=False, # for InternImage-H/G
level2_post_norm_block_ids=None, # for InternImage-H/G
res_post_norm=False, # for InternImage-H/G
center_feature_scale=False, # for InternImage-H/G
remove_center=False, # for InternImage-H/G
**kwargs):
super().__init__()
if core_op == 'DCNv3' and has_cuda_kernel:
self.core_op = DCNv3
print('DCNv3 is installed, using CUDA implementation.')
elif core_op == 'DCNv3' and not has_cuda_kernel:
self.core_op = DCNv3_pytorch
print('DCNv3 is not installed, using PyTorch implementation.')
else:
self.core_op = DCNv3_pytorch
print('Using DCNv3 PyTorch implementation.')
self.num_classes = num_classes
self.num_levels = len(depths)
self.depths = depths
self.channels = channels
self.num_features = int(channels * 2 ** (self.num_levels - 1))
self.post_norm = post_norm
self.mlp_ratio = mlp_ratio
self.use_clip_projector = use_clip_projector
self.level2_post_norm_block_ids = level2_post_norm_block_ids
self.remove_center = remove_center
print(f'using core type: {core_op}')
print(f'level2_post_norm: {level2_post_norm}')
print(f'level2_post_norm_block_ids: {level2_post_norm_block_ids}')
print(f'res_post_norm: {res_post_norm}')
print(f'remove_center: {remove_center}')
in_chans = 3
self.patch_embed = StemLayer(in_chans=in_chans,
out_chans=channels,
act_layer=act_layer,
norm_layer=norm_layer)
self.pos_drop = nn.Dropout(p=drop_rate)
dpr = [
x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))
]
if drop_path_type == 'uniform':
for i in range(len(dpr)):
dpr[i] = drop_path_rate
self.levels = nn.ModuleList()
for i in range(self.num_levels):
post_norm_block_ids = level2_post_norm_block_ids if level2_post_norm and (
i == 2) else None # for InternImage-H/G
level = InternImageBlock(
core_op=self.core_op,
channels=int(channels * 2 ** i),
depth=depths[i],
groups=groups[i],
mlp_ratio=self.mlp_ratio,
drop=drop_rate,
drop_path=dpr[sum(depths[:i]):sum(depths[:i + 1])],
act_layer=act_layer,
norm_layer=norm_layer,
post_norm=post_norm,
downsample=(i < self.num_levels - 1),
layer_scale=layer_scale,
offset_scale=offset_scale,
with_cp=with_cp,
dw_kernel_size=dw_kernel_size, # for InternImage-H/G
post_norm_block_ids=post_norm_block_ids, # for InternImage-H/G
res_post_norm=res_post_norm, # for InternImage-H/G
center_feature_scale=center_feature_scale, # for InternImage-H/G
remove_center=remove_center, # for InternImage-H/G
)
self.levels.append(level)
if self.num_classes > 0:
if not use_clip_projector: # for InternImage-T/S/B/L/XL
self.conv_head = nn.Sequential(
nn.Conv2d(self.num_features,
int(self.num_features * cls_scale),
kernel_size=1,
bias=False),
build_norm_layer(int(self.num_features * cls_scale), 'BN',
'channels_first', 'channels_first'),
build_act_layer(act_layer))
self.head = nn.Linear(int(self.num_features * cls_scale), num_classes) \
if num_classes > 0 else nn.Identity()
else: # for InternImage-H/G
pretrain_embed_dim, _stride, attnpool_num_heads, clip_embed_dim = 1024, 2, 16, 768
self.dcnv3_head_x4 = nn.Sequential(
nn.Conv2d(in_channels=self.num_features,
out_channels=pretrain_embed_dim * (_stride ** 2),
kernel_size=1), nn.PixelShuffle(_stride))
self.dcnv3_head_x3 = nn.Conv2d(in_channels=self.num_features // 2,
out_channels=pretrain_embed_dim,
kernel_size=1)
self.clip_projector = AttentionPoolingBlock(
dim=pretrain_embed_dim,
num_heads=attnpool_num_heads,
qkv_bias=True,
qk_scale=None,
drop=0.,
attn_drop=0.,
norm_layer=norm_layer,
out_dim=clip_embed_dim)
self.fc_norm = build_norm_layer(clip_embed_dim, norm_layer, eps=1e-6)
self.head = nn.Linear(
clip_embed_dim, num_classes) if num_classes > 0 else nn.Identity()
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.num_layers = len(depths)
self.apply(self._init_weights)
self.apply(self._init_deform_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def _init_deform_weights(self, m):
if isinstance(m, self.core_op):
m._reset_parameters()
@torch.jit.ignore
def lr_decay_keywords(self, decay_ratio=0.87):
lr_ratios = {}
# blocks
idx = 0
for i in range(4):
layer_num = 3 - i # 3 2 1 0
for j in range(self.depths[layer_num]):
block_num = self.depths[layer_num] - j - 1
tag = 'levels.{}.blocks.{}.'.format(layer_num, block_num)
decay = 1.0 * (decay_ratio ** idx)
lr_ratios[tag] = decay
idx += 1
# patch_embed (before stage-1)
lr_ratios['patch_embed'] = lr_ratios['levels.0.blocks.0.']
# levels.0.downsample (between stage-1 and stage-2)
lr_ratios['levels.0.downsample'] = lr_ratios['levels.1.blocks.0.']
lr_ratios['levels.0.norm'] = lr_ratios['levels.1.blocks.0.']
# levels.1.downsample (between stage-2 and stage-3)
lr_ratios['levels.1.downsample'] = lr_ratios['levels.2.blocks.0.']
lr_ratios['levels.1.norm'] = lr_ratios['levels.2.blocks.0.']
# levels.2.downsample (between stage-3 and stage-4)
lr_ratios['levels.2.downsample'] = lr_ratios['levels.3.blocks.0.']
lr_ratios['levels.2.norm'] = lr_ratios['levels.3.blocks.0.']
return lr_ratios
def forward_features_seq_out(self, x):
x = self.patch_embed(x)
x = self.pos_drop(x)
seq_out = []
for level in self.levels:
x, x_ = level(x, return_wo_downsample=True)
seq_out.append(x_)
return seq_out
def forward_features(self, x):
xs = self.forward_features_seq_out(x)
x1, x2, x3, x4 = xs
x1 = x1.permute(0, 3, 1, 2) # NHWC -> NCHW
x2 = x2.permute(0, 3, 1, 2) # NHWC -> NCHW
x3 = x3.permute(0, 3, 1, 2) # NHWC -> NCHW
x4 = x4.permute(0, 3, 1, 2) # NHWC -> NCHW
hidden_states = [x1, x2, x3, x4]
if self.num_classes > 0:
x = self.conv_head(x4)
x = self.avgpool(x)
x = torch.flatten(x, 1)
return {
'hidden_states': hidden_states,
'pooler_output': x if self.num_classes > 0 else None
}
def forward_clip_projector(self, x): # for InternImage-H/G
xs = self.forward_features_seq_out(x)
x1, x2, x3, x4 = xs
x1 = x1.permute(0, 3, 1, 2) # NHWC -> NCHW
x2 = x2.permute(0, 3, 1, 2) # NHWC -> NCHW
x3 = x3.permute(0, 3, 1, 2) # NHWC -> NCHW
x4 = x4.permute(0, 3, 1, 2) # NHWC -> NCHW
hidden_states = [x1, x2, x3, x4]
if self.num_classes > 0:
x4 = self.dcnv3_head_x4(x4)
x = x4
x3 = self.dcnv3_head_x3(x3)
x = x + x3
x = x.flatten(-2).transpose(1, 2).contiguous()
x = self.clip_projector(x)
x = self.fc_norm(x)
return {
'hidden_states': hidden_states,
'pooler_output': x if self.num_classes > 0 else None
}
def forward(self, x):
if self.use_clip_projector: # for InternImage-H/G
outputs = self.forward_clip_projector(x)
else: # for InternImage-T/S/B/L/XL
outputs = self.forward_features(x)
hidden_states = outputs['hidden_states']
pooler_output = outputs['pooler_output']
if self.num_classes > 0:
logits = self.head(pooler_output)
else:
logits = None
return BackboneOutput(
hidden_states=hidden_states,
last_hidden_state=hidden_states[-1],
pooler_output=pooler_output,
logits=logits
)
class InternImageModel(PreTrainedModel):
config_class = InternImageConfig
def __init__(self, config):
super().__init__(config)
self.model = InternImage(
core_op=config.core_op,
channels=config.channels,
depths=config.depths,
groups=config.groups,
num_classes=0,
mlp_ratio=config.mlp_ratio,
drop_rate=config.drop_rate,
drop_path_rate=config.drop_path_rate,
drop_path_type=config.drop_path_type,
act_layer=config.act_layer,
norm_layer=config.norm_layer,
layer_scale=config.layer_scale,
offset_scale=config.offset_scale,
post_norm=config.post_norm,
cls_scale=config.cls_scale,
with_cp=config.with_cp,
dw_kernel_size=config.dw_kernel_size, # for InternImage-H/G
use_clip_projector=config.use_clip_projector, # for InternImage-H/G
level2_post_norm=config.level2_post_norm, # for InternImage-H/G
level2_post_norm_block_ids=config.level2_post_norm_block_ids, # for InternImage-H/G
res_post_norm=config.res_post_norm, # for InternImage-H/G
center_feature_scale=config.center_feature_scale, # for InternImage-H/G
remove_center=config.remove_center, # for InternImage-H/G
)
def forward(self, tensor):
return self.model.forward_features(tensor)
class InternImageModelForImageClassification(PreTrainedModel):
config_class = InternImageConfig
def __init__(self, config):
super().__init__(config)
self.model = InternImage(
core_op=config.core_op,
channels=config.channels,
depths=config.depths,
groups=config.groups,
num_classes=config.num_classes,
mlp_ratio=config.mlp_ratio,
drop_rate=config.drop_rate,
drop_path_rate=config.drop_path_rate,
drop_path_type=config.drop_path_type,
act_layer=config.act_layer,
norm_layer=config.norm_layer,
layer_scale=config.layer_scale,
offset_scale=config.offset_scale,
post_norm=config.post_norm,
cls_scale=config.cls_scale,
with_cp=config.with_cp,
dw_kernel_size=config.dw_kernel_size, # for InternImage-H/G
use_clip_projector=config.use_clip_projector, # for InternImage-H/G
level2_post_norm=config.level2_post_norm, # for InternImage-H/G
level2_post_norm_block_ids=config.level2_post_norm_block_ids, # for InternImage-H/G
res_post_norm=config.res_post_norm, # for InternImage-H/G
center_feature_scale=config.center_feature_scale, # for InternImage-H/G
remove_center=config.remove_center, # for InternImage-H/G
)
def forward(self, tensor, labels=None):
outputs = self.model.forward(tensor)
if labels is not None:
logits = outputs['logits']
loss = F.cross_entropy(logits, labels)
outputs['loss'] = loss
return outputs
|