File size: 8,596 Bytes
384461b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
# --------------------------------------------------------
# InternImage
# Copyright (c) 2025 OpenGVLab
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------

from __future__ import absolute_import, division, print_function

try:
    import DCNv3
    dcn_version = float(pkg_resources.get_distribution('DCNv3').version)
    has_cuda_kernel = True
except:
    has_cuda_kernel = False
import pkg_resources
import torch
import torch.nn.functional as F
from torch.autograd import Function
from torch.autograd.function import once_differentiable
from torch.cuda.amp import custom_bwd, custom_fwd


class DCNv3Function(Function):
    @staticmethod
    @custom_fwd
    def forward(
            ctx, input, offset, mask,
            kernel_h, kernel_w, stride_h, stride_w,
            pad_h, pad_w, dilation_h, dilation_w,
            group, group_channels, offset_scale, im2col_step, remove_center):
        ctx.kernel_h = kernel_h
        ctx.kernel_w = kernel_w
        ctx.stride_h = stride_h
        ctx.stride_w = stride_w
        ctx.pad_h = pad_h
        ctx.pad_w = pad_w
        ctx.dilation_h = dilation_h
        ctx.dilation_w = dilation_w
        ctx.group = group
        ctx.group_channels = group_channels
        ctx.offset_scale = offset_scale
        ctx.im2col_step = im2col_step
        ctx.remove_center = remove_center

        args = [
            input, offset, mask, kernel_h,
            kernel_w, stride_h, stride_w, pad_h,
            pad_w, dilation_h, dilation_w, group,
            group_channels, offset_scale, ctx.im2col_step
        ]
        if remove_center or dcn_version > 1.0:
            args.append(remove_center)

        output = DCNv3.dcnv3_forward(*args)
        ctx.save_for_backward(input, offset, mask)

        return output

    @staticmethod
    @once_differentiable
    @custom_bwd
    def backward(ctx, grad_output):
        input, offset, mask = ctx.saved_tensors

        args = [
            input, offset, mask, ctx.kernel_h,
            ctx.kernel_w, ctx.stride_h, ctx.stride_w, ctx.pad_h,
            ctx.pad_w, ctx.dilation_h, ctx.dilation_w, ctx.group,
            ctx.group_channels, ctx.offset_scale, grad_output.contiguous(), ctx.im2col_step
        ]
        if ctx.remove_center or dcn_version > 1.0:
            args.append(ctx.remove_center)

        grad_input, grad_offset, grad_mask = \
            DCNv3.dcnv3_backward(*args)

        return grad_input, grad_offset, grad_mask, \
            None, None, None, None, None, None, None, None, None, None, None, None, None

    @staticmethod
    def symbolic(g, input, offset, mask, kernel_h, kernel_w, stride_h,
                 stride_w, pad_h, pad_w, dilation_h, dilation_w, group,
                 group_channels, offset_scale, im2col_step, remove_center):
        """Symbolic function for mmdeploy::DCNv3.

        Returns:
            DCNv3 op for onnx.
        """
        return g.op(
            'mmdeploy::TRTDCNv3',
            input,
            offset,
            mask,
            kernel_h_i=int(kernel_h),
            kernel_w_i=int(kernel_w),
            stride_h_i=int(stride_h),
            stride_w_i=int(stride_w),
            pad_h_i=int(pad_h),
            pad_w_i=int(pad_w),
            dilation_h_i=int(dilation_h),
            dilation_w_i=int(dilation_w),
            group_i=int(group),
            group_channels_i=int(group_channels),
            offset_scale_f=float(offset_scale),
            im2col_step_i=int(im2col_step),
            remove_center_i=int(remove_center),
        )


def _get_reference_points(spatial_shapes, device, kernel_h, kernel_w, dilation_h, dilation_w, pad_h=0, pad_w=0, stride_h=1, stride_w=1):
    _, H_, W_, _ = spatial_shapes
    H_out = (H_ - (dilation_h * (kernel_h - 1) + 1)) // stride_h + 1
    W_out = (W_ - (dilation_w * (kernel_w - 1) + 1)) // stride_w + 1

    ref_y, ref_x = torch.meshgrid(
        torch.linspace(
            # pad_h + 0.5,
            # H_ - pad_h - 0.5,
            (dilation_h * (kernel_h - 1)) // 2 + 0.5,
            (dilation_h * (kernel_h - 1)) // 2 + 0.5 + (H_out - 1) * stride_h,
            H_out,
            dtype=torch.float32,
            device=device),
        torch.linspace(
            # pad_w + 0.5,
            # W_ - pad_w - 0.5,
            (dilation_w * (kernel_w - 1)) // 2 + 0.5,
            (dilation_w * (kernel_w - 1)) // 2 + 0.5 + (W_out - 1) * stride_w,
            W_out,
            dtype=torch.float32,
            device=device))
    ref_y = ref_y.reshape(-1)[None] / H_
    ref_x = ref_x.reshape(-1)[None] / W_

    ref = torch.stack((ref_x, ref_y), -1).reshape(
        1, H_out, W_out, 1, 2)

    return ref


def _generate_dilation_grids(spatial_shapes, kernel_h, kernel_w, dilation_h, dilation_w, group, device):
    _, H_, W_, _ = spatial_shapes
    points_list = []
    x, y = torch.meshgrid(
        torch.linspace(
            -((dilation_w * (kernel_w - 1)) // 2),
            -((dilation_w * (kernel_w - 1)) // 2) + (kernel_w - 1) * dilation_w,
            kernel_w,
            dtype=torch.float32,
            device=device),
        torch.linspace(
            -((dilation_h * (kernel_h - 1)) // 2),
            -((dilation_h * (kernel_h - 1)) // 2) + (kernel_h - 1) * dilation_h,
            kernel_h,
            dtype=torch.float32,
            device=device))

    points_list.extend([x / W_, y / H_])
    grid = torch.stack(points_list, -1).reshape(-1, 1, 2).\
        repeat(1, group, 1).permute(1, 0, 2)
    grid = grid.reshape(1, 1, 1, group * kernel_h * kernel_w, 2)

    return grid


def remove_center_sampling_locations(sampling_locations, kernel_w, kernel_h):
    idx = list(range(sampling_locations.shape[-2]))
    C = (kernel_w * kernel_h - 1)//2
    idx = [i for i in idx if i != C and (i-C) % (C*2+1) != 0]
    sampling_locations = sampling_locations[:,:,:,idx, :]
    return sampling_locations


def dcnv3_core_pytorch(
        input, offset, mask, kernel_h,
        kernel_w, stride_h, stride_w, pad_h,
        pad_w, dilation_h, dilation_w, group,
        group_channels, offset_scale, remove_center):
    # for debug and test only,
    # need to use cuda version instead

    if remove_center and (kernel_h % 2 == 0 or kernel_w % 2 == 0 or kernel_w != kernel_h):
        raise ValueError('remove_center is only compatible with square odd kernel size.')

    input = F.pad(
        input,
        [0, 0, pad_h, pad_h, pad_w, pad_w])
    N_, H_in, W_in, _ = input.shape
    _, H_out, W_out, _ = offset.shape

    ref = _get_reference_points(
        input.shape, input.device, kernel_h, kernel_w, dilation_h, dilation_w, pad_h, pad_w, stride_h, stride_w)
    grid = _generate_dilation_grids(
        input.shape, kernel_h, kernel_w, dilation_h, dilation_w, group, input.device)
    spatial_norm = torch.tensor([W_in, H_in]).reshape(1, 1, 1, 2).\
        repeat(1, 1, 1, group*(kernel_h*kernel_w-remove_center)).to(input.device)

    sampling_locations = (ref + grid * offset_scale).repeat(N_, 1, 1, 1, 1)
    if remove_center:
        sampling_locations = remove_center_sampling_locations(sampling_locations, kernel_w=kernel_w, kernel_h=kernel_h)
    sampling_locations = sampling_locations.flatten(3, 4)
    sampling_locations = sampling_locations + offset * offset_scale / spatial_norm

    P_ = kernel_h * kernel_w - remove_center
    sampling_grids = 2 * sampling_locations - 1
    # N_, H_in, W_in, group*group_channels -> N_, H_in*W_in, group*group_channels -> N_, group*group_channels, H_in*W_in -> N_*group, group_channels, H_in, W_in
    input_ = input.view(N_, H_in*W_in, group*group_channels).transpose(1, 2).\
        reshape(N_*group, group_channels, H_in, W_in)
    # N_, H_out, W_out, group*P_*2 -> N_, H_out*W_out, group, P_, 2 -> N_, group, H_out*W_out, P_, 2 -> N_*group, H_out*W_out, P_, 2
    sampling_grid_ = sampling_grids.view(N_, H_out*W_out, group, P_, 2).transpose(1, 2).\
        flatten(0, 1)
    # N_*group, group_channels, H_out*W_out, P_
    sampling_input_ = F.grid_sample(
        input_, sampling_grid_, mode='bilinear', padding_mode='zeros', align_corners=False)

    # (N_, H_out, W_out, group*P_) -> N_, H_out*W_out, group, P_ -> (N_, group, H_out*W_out, P_) -> (N_*group, 1, H_out*W_out, P_)
    mask = mask.view(N_, H_out*W_out, group, P_).transpose(1, 2).\
        reshape(N_*group, 1, H_out*W_out, P_)
    output = (sampling_input_ * mask).sum(-1).view(N_,
                                                   group*group_channels, H_out*W_out)

    return output.transpose(1, 2).reshape(N_, H_out, W_out, -1).contiguous()