File size: 37,671 Bytes
16dc4f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 |
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
"""
DETR Transformer class.
Copy-paste from torch.nn.Transformer with modifications:
* positional encodings are passed in MHattention
* extra LN at the end of encoder is removed
* decoder returns a stack of activations from all decoding layers
"""
import copy
from typing import Optional
import torch
import torch.nn.functional as F
from torch import nn, Tensor
import math
import numpy as np
from .attention import MultiheadAttention
from .crossattention import MultiheadAttention as cateattention
class MLP(nn.Module):
""" Very simple multi-layer perceptron (also called FFN)"""
def __init__(self, input_dim, hidden_dim, output_dim, num_layers):
super().__init__()
self.num_layers = num_layers
h = [hidden_dim] * (num_layers - 1)
self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
def forward(self, x):
for i, layer in enumerate(self.layers):
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
return x
def inverse_sigmoid(x, eps=1e-3):
x = x.clamp(min=0, max=1)
x1 = x.clamp(min=eps)
x2 = (1 - x).clamp(min=eps)
return torch.log(x1/x2)
def gen_sineembed_for_position(pos_tensor, d_model):
# n_query, bs, _ = pos_tensor.size()
# sineembed_tensor = torch.zeros(n_query, bs, 256)
scale = 2 * math.pi
dim_t = torch.arange(d_model//2, dtype=torch.float32, device=pos_tensor.device)
dim_t = 10000 ** (2 * (dim_t // 2) / (d_model//2))
center_embed = pos_tensor[:, :, 0] * scale
pos_x = center_embed[:, :, None] / dim_t
pos_x = torch.stack((pos_x[:, :, 0::2].sin(), pos_x[:, :, 1::2].cos()), dim=3).flatten(2)
span_embed = pos_tensor[:, :, 1] * scale
pos_w = span_embed[:, :, None] / dim_t
pos_w = torch.stack((pos_w[:, :, 0::2].sin(), pos_w[:, :, 1::2].cos()), dim=3).flatten(2)
pos = torch.cat((pos_x, pos_w), dim=2)
return pos
class Transformer(nn.Module):
def __init__(self, d_model=512, nhead=8, num_queries=2, num_encoder_layers=6,
num_decoder_layers=6, dim_feedforward=2048, dropout=0.1,
activation="relu", normalize_before=False,
return_intermediate_dec=False, query_dim=2,
keep_query_pos=False, query_scale_type='cond_elewise',
num_patterns=0,
modulate_t_attn=True,
bbox_embed_diff_each_layer=False, args=None
):
super().__init__()
self.args = args
mcls_encoder_layer = TransformerEncoderLayer(d_model, nhead, dim_feedforward,
dropout, activation, normalize_before)
mcls_encoder_norm = nn.LayerNorm(d_model) if normalize_before else None
self.mcls_encoder = TransformerEncoder(mcls_encoder_layer, args.moment_layers, mcls_encoder_norm)
t2v_encoder_layer = T2V_TransformerEncoderLayer(d_model, nhead, dim_feedforward,
dropout, activation, normalize_before, self.args.num_dummies)
encoder_norm = nn.LayerNorm(d_model) if normalize_before else None
self.t2v_encoder = TransformerCATEEncoder(t2v_encoder_layer, args.t2v_layers, encoder_norm)
encoder_layer = TransformerEncoderLayer(d_model, nhead, dim_feedforward,
dropout, activation, normalize_before)
encoder_norm = nn.LayerNorm(d_model) if normalize_before else None
self.encoder = TransformerEncoder(encoder_layer, num_encoder_layers, encoder_norm)
decoder_layer = TransformerDecoderLayer(d_model, nhead, dim_feedforward,
dropout, activation, normalize_before, keep_query_pos=keep_query_pos)
decoder_norm = nn.LayerNorm(d_model)
self.decoder = TransformerDecoder(decoder_layer, num_decoder_layers, decoder_norm,
return_intermediate=return_intermediate_dec,
d_model=d_model, query_dim=query_dim, keep_query_pos=keep_query_pos, query_scale_type=query_scale_type,
modulate_t_attn=modulate_t_attn,
bbox_embed_diff_each_layer=bbox_embed_diff_each_layer)
self._reset_parameters()
self.d_model = d_model
self.nhead = nhead
self.dec_layers = num_decoder_layers
self.num_queries = num_queries
self.num_patterns = num_patterns
def _reset_parameters(self):
for p in self.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
def forward(self, src, mask, query_embed, pos_embed, video_length=None, moment_idx=None, msrc=None, mpos=None, mmask=None,
nmsrc=None, nmpos=None, nmmask=None,
ctxtoken=None, gtoken=None, gpos=None, vlen=None):
"""
Args:
src: (batch_size, L, d)
mask: (batch_size, L)
query_embed: (#queries, d)
pos_embed: (batch_size, L, d) the same as src
video length: feature shape
vlen: actual video length
Returns:
"""
# moment token
device = ctxtoken.device
if msrc is not None:
msrc = msrc.permute(1, 0, 2) # (L, batch_size, d)
mpos = mpos.permute(1, 0, 2) # (L, batch_size, d)
mmemory = self.mcls_encoder(msrc, src_key_padding_mask=mmask, pos=mpos) # (L, batch_size, d)
mmemory_moment, mmemory_frames = mmemory[0], mmemory[1:]
else:
mmemory_moment = None
mmemory_frames = None
if nmsrc is not None:
nmsrc = nmsrc.permute(1, 0, 2) # (L, batch_size, d)
nmpos = nmpos.permute(1, 0, 2) # (L, batch_size, d)
nmmemory = self.mcls_encoder(nmsrc, src_key_padding_mask=nmmask, pos=nmpos) # (L, batch_size, d)
nmmemory_moment, nmmemory_frames = nmmemory[0], nmmemory[1:]
else:
nmmemory_moment = None
nmmemory_frames = None
# flatten NxCxHxW to HWxNxC
bs, l, d = src.shape
src = src.permute(1, 0, 2) # (L, batch_size, d)
pos_embed = pos_embed.permute(1, 0, 2) # (L, batch_size, d)
refpoint_embed = query_embed.unsqueeze(1).repeat(1, bs, 1) # (#queries, batch_size, d)
# import pdb; pdb.set_trace()
# print(src.dtype)
t2v_src, attn_weights = self.t2v_encoder(src, src_key_padding_mask=mask, pos=pos_embed, video_length=video_length) # (L, batch_size, d)
# Saliency Token
## Context
ctx_src_ = ctxtoken.permute(1, 0, 2) # L b d
## Distribution Token with 10 prompt tokens
### Video Clip featre - context (avg) --> Find top 10 similar tokens --> weighted sum
# import pdb; pdb.set_trace()
fr_token_sim = torch.softmax(torch.matmul(F.normalize((src[:video_length] - ctx_src_).permute(1, 0, 2), dim=2), F.normalize(gtoken, dim=1).T), dim=-1)# src : b 75 d, token : 10 x d --> b 75 10
### Calculate clip importance
frame_importance = attn_weights[:, :, self.args.num_dummies:].sum(2).clone().detach() # b 75
### Masking empty clips
for i in range(len(frame_importance)):
frame_importance[i][vlen[i]:] *= 0.
### Normalize
frame_importance = (frame_importance / frame_importance.sum(1).unsqueeze(1)) * frame_importance.size(1) # b 75
### Scale the similarity with importance
fr_token_sim = fr_token_sim * frame_importance.unsqueeze(2).repeat(1, 1, fr_token_sim.size(2)) # b 75 10
fr_token_sim = fr_token_sim.mean(1) # b 10
topk_val, topkidx = torch.topk(fr_token_sim, k=self.args.num_prompts, dim=1)
src_ = torch.zeros((len(fr_token_sim), self.d_model), dtype=torch.bfloat16).to(device)
for i in range(len(fr_token_sim)):
src_[i] = (topk_val[i].unsqueeze(1) * gtoken[topkidx[i]]).sum(0)
src_ = src_.reshape(1, src.size(1), -1)
## Add context and distribution token
src_ = src_ + ctx_src_
pos_ = gpos.reshape([1, 1, self.d_model]).repeat(1, pos_embed.shape[1], 1)
mask_ = torch.tensor([[False]]).to(mask.device).repeat(mask.shape[0], 1)
# import pdb; pdb.set_trace()
src_, _ = self.t2v_encoder(src_, src_key_padding_mask=mask_, pos=pos_,
video_length=video_length, dummy=False) # (L, batch_size, d)
src = torch.cat([src_, t2v_src], dim=0)
mask = torch.cat([mask_, mask], dim=1)
pos_embed = torch.cat([pos_, pos_embed], dim=0)
src = src[:video_length + 1]
mask = mask[:, :video_length + 1]
pos_embed = pos_embed[:video_length + 1]
memory = self.encoder(src, src_key_padding_mask=mask, pos=pos_embed) # (L, batch_size, d)
memory_global, memory_local = memory[0], memory[1:]
memory_local += memory_global.unsqueeze(0).repeat(memory_local.size(0), 1, 1)
mask_local = mask[:, 1:]
pos_embed_local = pos_embed[1:]
tgt = torch.zeros(refpoint_embed.shape[0], bs, d).to(device)
tgt = tgt.type(torch.bfloat16)
# import pdb; pdb.set_trace()
hs, references = self.decoder(tgt, memory_local, memory_key_padding_mask=mask_local, pos=pos_embed_local, refpoints_unsigmoid=refpoint_embed) # (#layers, #queries, batch_size, d)
memory_local = memory_local.transpose(0, 1) # (batch_size, L, d)
return hs, references, memory_local, memory_global, attn_weights, mmemory_moment, nmmemory_moment, mmemory_frames, nmmemory_frames
class TransformerCATEEncoder(nn.Module):
def __init__(self, encoder_layer, num_layers, norm=None, return_intermediate=False):
super().__init__()
self.layers = _get_clones(encoder_layer, num_layers)
self.num_layers = num_layers
self.norm = norm
self.return_intermediate = return_intermediate
def forward(self, src,
mask: Optional[Tensor] = None,
src_key_padding_mask: Optional[Tensor] = None,
pos: Optional[Tensor] = None,
dummy=True,
**kwargs):
output = src
intermediate = []
attn_weights = None
for i, layer in enumerate(self.layers):
output, attn_weight = layer(output, src_mask=mask,
src_key_padding_mask=src_key_padding_mask, pos=pos, dummy=dummy, **kwargs)
if attn_weights is None:
attn_weights = attn_weight
else:
attn_weights = attn_weights + attn_weight
if self.return_intermediate:
intermediate.append(output)
attn_weights /= self.num_layers
if self.norm is not None:
output = self.norm(output)
if self.return_intermediate:
return torch.stack(intermediate)
return output, attn_weights
class TransformerEncoder(nn.Module):
def __init__(self, encoder_layer, num_layers, norm=None, return_intermediate=False):
super().__init__()
self.layers = _get_clones(encoder_layer, num_layers)
self.num_layers = num_layers
self.norm = norm
self.return_intermediate = return_intermediate
def forward(self, src,
mask: Optional[Tensor] = None,
src_key_padding_mask: Optional[Tensor] = None,
pos: Optional[Tensor] = None,
**kwargs):
output = src
intermediate = []
for layer in self.layers:
output = layer(output, src_mask=mask,
src_key_padding_mask=src_key_padding_mask, pos=pos, **kwargs)
if self.return_intermediate:
intermediate.append(output)
if self.norm is not None:
output = self.norm(output)
if self.return_intermediate:
return torch.stack(intermediate)
return output
class TransformerDecoder(nn.Module):
def __init__(self, decoder_layer, num_layers, norm=None, return_intermediate=False,
d_model=256, query_dim=2, keep_query_pos=False, query_scale_type='cond_elewise',
modulate_t_attn=False,
bbox_embed_diff_each_layer=False,
):
super().__init__()
self.layers = _get_clones(decoder_layer, num_layers)
self.num_layers = num_layers
self.norm = norm
self.return_intermediate = return_intermediate
assert return_intermediate
self.query_dim = query_dim
assert query_scale_type in ['cond_elewise', 'cond_scalar', 'fix_elewise']
self.query_scale_type = query_scale_type
if query_scale_type == 'cond_elewise':
self.query_scale = MLP(d_model, d_model, d_model, 2)
elif query_scale_type == 'cond_scalar':
self.query_scale = MLP(d_model, d_model, 1, 2)
elif query_scale_type == 'fix_elewise':
self.query_scale = nn.Embedding(num_layers, d_model)
else:
raise NotImplementedError("Unknown query_scale_type: {}".format(query_scale_type))
self.ref_point_head = MLP(d_model, d_model, d_model, 2)
# self.bbox_embed = None
# for DAB-detr
if bbox_embed_diff_each_layer:
self.bbox_embed = nn.ModuleList([MLP(d_model, d_model, 2, 3) for i in range(num_layers)])
else:
self.bbox_embed = MLP(d_model, d_model, 2, 3)
# init bbox_embed
if bbox_embed_diff_each_layer:
for bbox_embed in self.bbox_embed:
nn.init.constant_(bbox_embed.layers[-1].weight.data, 0)
nn.init.constant_(bbox_embed.layers[-1].bias.data, 0)
else:
nn.init.constant_(self.bbox_embed.layers[-1].weight.data, 0)
nn.init.constant_(self.bbox_embed.layers[-1].bias.data, 0)
self.d_model = d_model
self.modulate_t_attn = modulate_t_attn
self.bbox_embed_diff_each_layer = bbox_embed_diff_each_layer
if modulate_t_attn:
self.ref_anchor_head = MLP(d_model, d_model, 1, 2)
if not keep_query_pos:
for layer_id in range(num_layers - 1):
self.layers[layer_id + 1].ca_qpos_proj = None
def forward(self, tgt, memory,
tgt_mask: Optional[Tensor] = None,
memory_mask: Optional[Tensor] = None,
tgt_key_padding_mask: Optional[Tensor] = None,
memory_key_padding_mask: Optional[Tensor] = None,
pos: Optional[Tensor] = None,
refpoints_unsigmoid: Optional[Tensor] = None, # num_queries, bs, 2
):
output = tgt
intermediate = []
reference_points = refpoints_unsigmoid.sigmoid()
ref_points = [reference_points]
# import pdb; pdb.set_trace()
for layer_id, layer in enumerate(self.layers):
obj_center = reference_points[..., :self.query_dim]
# get sine embedding for the query vector
query_sine_embed = gen_sineembed_for_position(obj_center, self.d_model)
query_sine_embed = query_sine_embed.type(torch.bfloat16)
query_pos = self.ref_point_head(query_sine_embed)
# For the first decoder layer, we do not apply transformation over p_s
if self.query_scale_type != 'fix_elewise':
if layer_id == 0:
pos_transformation = 1
else:
pos_transformation = self.query_scale(output)
else:
pos_transformation = self.query_scale.weight[layer_id]
# apply transformation
query_sine_embed = query_sine_embed * pos_transformation
# modulated HW attentions
if self.modulate_t_attn:
reft_cond = self.ref_anchor_head(output).sigmoid() # nq, bs, 1
query_sine_embed *= (reft_cond[..., 0] / obj_center[..., 1]).unsqueeze(-1)
output = layer(output, memory, tgt_mask=tgt_mask,
memory_mask=memory_mask,
tgt_key_padding_mask=tgt_key_padding_mask,
memory_key_padding_mask=memory_key_padding_mask,
pos=pos, query_pos=query_pos, query_sine_embed=query_sine_embed,
is_first=(layer_id == 0))
# iter update
if self.bbox_embed is not None:
if self.bbox_embed_diff_each_layer:
tmp = self.bbox_embed[layer_id](output)
else:
tmp = self.bbox_embed(output)
# import ipdb; ipdb.set_trace()
tmp[..., :self.query_dim] += inverse_sigmoid(reference_points)
new_reference_points = tmp[..., :self.query_dim].sigmoid()
if layer_id != self.num_layers - 1:
ref_points.append(new_reference_points)
reference_points = new_reference_points.detach()
if self.return_intermediate:
intermediate.append(self.norm(output))
if self.norm is not None:
output = self.norm(output)
if self.return_intermediate:
intermediate.pop()
intermediate.append(output)
if self.return_intermediate:
if self.bbox_embed is not None:
return [
torch.stack(intermediate).transpose(1, 2),
torch.stack(ref_points).transpose(1, 2),
]
else:
return [
torch.stack(intermediate).transpose(1, 2),
reference_points.unsqueeze(0).transpose(1, 2)
]
return output.unsqueeze(0)
class TransformerEncoderLayerThin(nn.Module):
def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1,
activation="relu", normalize_before=False):
super().__init__()
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
# Implementation of Feedforward model
# self.linear1 = nn.Linear(d_model, dim_feedforward)
# self.dropout = nn.Dropout(dropout)
# self.linear2 = nn.Linear(dim_feedforward, d_model)
self.linear = nn.Linear(d_model, d_model)
self.norm = nn.LayerNorm(d_model)
self.dropout = nn.Dropout(dropout)
# self.activation = _get_activation_fn(activation)
self.normalize_before = normalize_before
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
return tensor if pos is None else tensor + pos
def forward_post(self,
src,
src_mask: Optional[Tensor] = None,
src_key_padding_mask: Optional[Tensor] = None,
pos: Optional[Tensor] = None):
q = k = self.with_pos_embed(src, pos)
src2 = self.self_attn(q, k, value=src, attn_mask=src_mask,
key_padding_mask=src_key_padding_mask)[0]
src2 = self.linear(src2)
src = src + self.dropout(src2)
src = self.norm(src)
# src = src + self.dropout1(src2)
# src = self.norm1(src)
# src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
# src = src + self.dropout2(src2)
# src = self.norm2(src)
return src
def forward_pre(self, src,
src_mask: Optional[Tensor] = None,
src_key_padding_mask: Optional[Tensor] = None,
pos: Optional[Tensor] = None):
"""not used"""
src2 = self.norm1(src)
q = k = self.with_pos_embed(src2, pos)
src2 = self.self_attn(q, k, value=src2, attn_mask=src_mask,
key_padding_mask=src_key_padding_mask)[0]
src = src + self.dropout1(src2)
src2 = self.norm2(src)
src2 = self.linear2(self.dropout(self.activation(self.linear1(src2))))
src = src + self.dropout2(src2)
return src
def forward(self, src,
src_mask: Optional[Tensor] = None,
src_key_padding_mask: Optional[Tensor] = None,
pos: Optional[Tensor] = None):
if self.normalize_before:
return self.forward_pre(src, src_mask, src_key_padding_mask, pos)
return self.forward_post(src, src_mask, src_key_padding_mask, pos)
class T2V_TransformerEncoderLayer(nn.Module):
def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1,
activation="relu", normalize_before=False, num_dummies=3):
super().__init__()
self.self_attn = cateattention(d_model, nhead, dropout=dropout, num_dummies=num_dummies)
# Implementation of Feedforward model
self.linear1 = nn.Linear(d_model, dim_feedforward)
self.dropout = nn.Dropout(dropout)
self.linear2 = nn.Linear(dim_feedforward, d_model)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.dropout1 = DropPath(dropout)
self.dropout2 = DropPath(dropout)
self.activation = _get_activation_fn(activation)
self.normalize_before = normalize_before
self.nhead = nhead
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
return tensor if pos is None else tensor + pos
def forward_post(self,
src,
src_mask: Optional[Tensor] = None,
src_key_padding_mask: Optional[Tensor] = None,
pos: Optional[Tensor] = None,
video_length=None, dummy=True):
assert video_length is not None
pos_src = self.with_pos_embed(src, pos)
q, k, v = pos_src[:video_length], pos_src[video_length:], src[video_length:]
qmask, kmask = src_key_padding_mask[:, :video_length].unsqueeze(2), src_key_padding_mask[:, video_length:].unsqueeze(1)
attn_mask = torch.matmul(qmask.float(), kmask.float()).bool().repeat(self.nhead, 1, 1)
# - key_padding_mask: :math:`(S)` or :math:`(N, S)` where N is the batch size, S is the source sequence length.
# If a FloatTensor is provided, it will be directly added to the value.
# If a BoolTensor is provided, the positions with the
# value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
# - attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
# 3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length,
# S is the source sequence length. attn_mask ensures that position i is allowed to attend the unmasked
# positions. If a BoolTensor is provided, positions with ``True``
# are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
# is provided, it will be added to the attention weight.
# print(q.shape, k.shape, v.shape, attn_mask.shape, src_key_padding_mask[:, video_length + 1:].shape)
# import pdb; pdb.set_trace()
src2, attn_weights = self.self_attn(q, k, v, attn_mask=attn_mask, key_padding_mask=src_key_padding_mask[:, video_length:], dummy=dummy)
src2 = src[:video_length] + self.dropout1(src2)
src3 = self.norm1(src2)
src3 = self.linear2(self.dropout(self.activation(self.linear1(src3))))
src2 = src2 + self.dropout2(src3)
src2 = self.norm2(src2)
src = torch.cat([src2, src[video_length:]])
return src, attn_weights
def forward_pre(self, src,
src_mask: Optional[Tensor] = None,
src_key_padding_mask: Optional[Tensor] = None,
pos: Optional[Tensor] = None, dummy=True):
pass
def forward(self, src,
src_mask: Optional[Tensor] = None,
src_key_padding_mask: Optional[Tensor] = None,
pos: Optional[Tensor] = None, dummy=True,
**kwargs):
if self.normalize_before:
return self.forward_pre(src, src_mask, src_key_padding_mask, pos, dummy=dummy)
return self.forward_post(src, src_mask, src_key_padding_mask, pos, dummy=dummy, **kwargs)
class TransformerEncoderLayer(nn.Module):
def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1,
activation="relu", normalize_before=False):
super().__init__()
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
# Implementation of Feedforward model
self.linear1 = nn.Linear(d_model, dim_feedforward)
self.dropout = nn.Dropout(dropout)
self.linear2 = nn.Linear(dim_feedforward, d_model)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.dropout1 = DropPath(dropout)
self.dropout2 = DropPath(dropout)
self.activation = _get_activation_fn(activation)
self.normalize_before = normalize_before
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
return tensor if pos is None else tensor + pos
def forward_post(self,
src,
src_mask: Optional[Tensor] = None,
src_key_padding_mask: Optional[Tensor] = None,
pos: Optional[Tensor] = None):
q = k = self.with_pos_embed(src, pos)
src2 = self.self_attn(q, k, value=src, attn_mask=src_mask,
key_padding_mask=src_key_padding_mask)[0]
src = src + self.dropout1(src2)
src = self.norm1(src)
src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
src = src + self.dropout2(src2)
src = self.norm2(src)
return src
def forward_pre(self, src,
src_mask: Optional[Tensor] = None,
src_key_padding_mask: Optional[Tensor] = None,
pos: Optional[Tensor] = None):
pass
def forward(self, src,
src_mask: Optional[Tensor] = None,
src_key_padding_mask: Optional[Tensor] = None,
pos: Optional[Tensor] = None):
if self.normalize_before:
return self.forward_pre(src, src_mask, src_key_padding_mask, pos)
return self.forward_post(src, src_mask, src_key_padding_mask, pos)
class TransformerDecoderLayer(nn.Module):
def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1,
activation="relu", normalize_before=False, keep_query_pos=False,
rm_self_attn_decoder=False):
super().__init__()
# Decoder Self-Attention
if not rm_self_attn_decoder:
self.sa_qcontent_proj = nn.Linear(d_model, d_model)
self.sa_qpos_proj = nn.Linear(d_model, d_model)
self.sa_kcontent_proj = nn.Linear(d_model, d_model)
self.sa_kpos_proj = nn.Linear(d_model, d_model)
self.sa_v_proj = nn.Linear(d_model, d_model)
self.self_attn = MultiheadAttention(d_model, nhead, dropout=dropout, vdim=d_model)
self.norm1 = nn.LayerNorm(d_model)
self.dropout1 = DropPath(dropout)
# Decoder Cross-Attention
self.ca_qcontent_proj = nn.Linear(d_model, d_model)
self.ca_qpos_proj = nn.Linear(d_model, d_model)
self.ca_kcontent_proj = nn.Linear(d_model, d_model)
self.ca_kpos_proj = nn.Linear(d_model, d_model)
self.ca_v_proj = nn.Linear(d_model, d_model)
self.ca_qpos_sine_proj = nn.Linear(d_model, d_model)
self.cross_attn = MultiheadAttention(d_model * 2, nhead, dropout=dropout, vdim=d_model)
self.nhead = nhead
self.rm_self_attn_decoder = rm_self_attn_decoder
# Implementation of Feedforward model
self.linear1 = nn.Linear(d_model, dim_feedforward)
self.dropout = nn.Dropout(dropout)
self.linear2 = nn.Linear(dim_feedforward, d_model)
self.norm2 = nn.LayerNorm(d_model)
self.norm3 = nn.LayerNorm(d_model)
self.dropout2 = DropPath(dropout)
self.dropout3 = DropPath(dropout)
self.activation = _get_activation_fn(activation)
self.normalize_before = normalize_before
self.keep_query_pos = keep_query_pos
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
return tensor if pos is None else tensor + pos
def forward(self, tgt, memory,
tgt_mask: Optional[Tensor] = None,
memory_mask: Optional[Tensor] = None,
tgt_key_padding_mask: Optional[Tensor] = None,
memory_key_padding_mask: Optional[Tensor] = None,
pos: Optional[Tensor] = None,
query_pos: Optional[Tensor] = None,
query_sine_embed=None,
is_first=False):
# ========== Begin of Self-Attention =============
if not self.rm_self_attn_decoder:
# Apply projections here
# shape: num_queries x batch_size x 256
q_content = self.sa_qcontent_proj(tgt) # target is the input of the first decoder layer. zero by default.
q_pos = self.sa_qpos_proj(query_pos)
k_content = self.sa_kcontent_proj(tgt)
k_pos = self.sa_kpos_proj(query_pos)
v = self.sa_v_proj(tgt)
num_queries, bs, n_model = q_content.shape
hw, _, _ = k_content.shape
q = q_content + q_pos
k = k_content + k_pos
tgt2 = self.self_attn(q, k, value=v, attn_mask=tgt_mask,
key_padding_mask=tgt_key_padding_mask)[0]
# ========== End of Self-Attention =============
tgt = tgt + self.dropout1(tgt2)
tgt = self.norm1(tgt)
# ========== Begin of Cross-Attention =============
# Apply projections here
# shape: num_queries x batch_size x 256
q_content = self.ca_qcontent_proj(tgt)
k_content = self.ca_kcontent_proj(memory)
v = self.ca_v_proj(memory)
num_queries, bs, n_model = q_content.shape
hw, _, _ = k_content.shape
k_pos = self.ca_kpos_proj(pos)
# For the first decoder layer, we concatenate the positional embedding predicted from
# the object query (the positional embedding) into the original query (key) in DETR.
if is_first or self.keep_query_pos:
q_pos = self.ca_qpos_proj(query_pos)
q = q_content + q_pos
k = k_content + k_pos
else:
q = q_content
k = k_content
q = q.view(num_queries, bs, self.nhead, n_model // self.nhead)
query_sine_embed = self.ca_qpos_sine_proj(query_sine_embed)
query_sine_embed = query_sine_embed.view(num_queries, bs, self.nhead, n_model // self.nhead)
q = torch.cat([q, query_sine_embed], dim=3).view(num_queries, bs, n_model * 2)
k = k.view(hw, bs, self.nhead, n_model // self.nhead)
k_pos = k_pos.view(hw, bs, self.nhead, n_model // self.nhead)
k = torch.cat([k, k_pos], dim=3).view(hw, bs, n_model * 2)
tgt2 = self.cross_attn(query=q,
key=k,
value=v, attn_mask=memory_mask,
key_padding_mask=memory_key_padding_mask)[0]
# ========== End of Cross-Attention =============
tgt = tgt + self.dropout2(tgt2)
tgt = self.norm2(tgt)
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
tgt = tgt + self.dropout3(tgt2)
tgt = self.norm3(tgt)
return tgt
class TransformerDecoderLayerThin(nn.Module):
"""removed intermediate layer"""
def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1,
activation="relu", normalize_before=False):
super().__init__()
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
# Implementation of Feedforward model
self.linear1 = nn.Linear(d_model, d_model)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
# self.norm3 = nn.LayerNorm(d_model)
self.dropout1 = DropPath(dropout)
self.dropout2 = DropPath(dropout)
# self.activation = _get_activation_fn(activation)
self.normalize_before = normalize_before
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
return tensor if pos is None else tensor + pos
def forward_post(self, tgt, memory,
tgt_mask: Optional[Tensor] = None,
memory_mask: Optional[Tensor] = None,
tgt_key_padding_mask: Optional[Tensor] = None,
memory_key_padding_mask: Optional[Tensor] = None,
pos: Optional[Tensor] = None,
query_pos: Optional[Tensor] = None):
q = k = self.with_pos_embed(tgt, query_pos)
tgt2 = self.self_attn(q, k, value=tgt, attn_mask=tgt_mask,
key_padding_mask=tgt_key_padding_mask)[0]
tgt = tgt + self.dropout1(tgt2)
tgt = self.norm1(tgt)
tgt2 = self.multihead_attn(query=self.with_pos_embed(tgt, query_pos),
key=self.with_pos_embed(memory, pos),
value=memory, attn_mask=memory_mask,
key_padding_mask=memory_key_padding_mask)[0]
tgt2 = self.linear1(tgt2)
tgt = tgt + self.dropout2(tgt2)
tgt = self.norm2(tgt)
return tgt
def forward_pre(self, tgt, memory,
tgt_mask: Optional[Tensor] = None,
memory_mask: Optional[Tensor] = None,
tgt_key_padding_mask: Optional[Tensor] = None,
memory_key_padding_mask: Optional[Tensor] = None,
pos: Optional[Tensor] = None,
query_pos: Optional[Tensor] = None):
tgt2 = self.norm1(tgt)
q = k = self.with_pos_embed(tgt2, query_pos)
tgt2 = self.self_attn(q, k, value=tgt2, attn_mask=tgt_mask,
key_padding_mask=tgt_key_padding_mask)[0]
tgt = tgt + self.dropout1(tgt2)
tgt2 = self.norm2(tgt)
tgt2 = self.multihead_attn(query=self.with_pos_embed(tgt2, query_pos),
key=self.with_pos_embed(memory, pos),
value=memory, attn_mask=memory_mask,
key_padding_mask=memory_key_padding_mask)[0]
tgt = tgt + self.dropout2(tgt2)
tgt2 = self.norm3(tgt)
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
tgt = tgt + self.dropout3(tgt2)
return tgt
def forward(self, tgt, memory,
tgt_mask: Optional[Tensor] = None,
memory_mask: Optional[Tensor] = None,
tgt_key_padding_mask: Optional[Tensor] = None,
memory_key_padding_mask: Optional[Tensor] = None,
pos: Optional[Tensor] = None,
query_pos: Optional[Tensor] = None):
if self.normalize_before:
return self.forward_pre(tgt, memory, tgt_mask, memory_mask,
tgt_key_padding_mask, memory_key_padding_mask, pos, query_pos)
return self.forward_post(tgt, memory, tgt_mask, memory_mask,
tgt_key_padding_mask, memory_key_padding_mask, pos, query_pos)
def _get_clones(module, N):
return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
def build_transformer(args):
return Transformer(
d_model=args.hidden_dim,
dropout=args.dropout,
nhead=args.nheads,
dim_feedforward=args.dim_feedforward,
num_encoder_layers=args.enc_layers,
num_decoder_layers=args.dec_layers,
normalize_before=args.pre_norm,
return_intermediate_dec=True,
activation='prelu',
args=args
)
def drop_path(x, drop_prob=0.0, training=False):
"""
Stochastic Depth per sample.
"""
if drop_prob == 0.0 or not training:
return x
keep_prob = 1 - drop_prob
shape = (x.shape[0],) + (1,) * (x.ndim - 1)
mask = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
mask.floor_()
x = x.div(keep_prob) * mask
return x
class DropPath(nn.Module):
"""
Drop paths per sample (when applied in main path of residual blocks).
"""
def __init__(self, drop_prob=None):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
def forward(self, x):
x = x.permute(1, 0, 2)
res = drop_path(x, self.drop_prob, self.training)
return res.permute(1, 0, 2)
def _get_activation_fn(activation):
"""Return an activation function given a string"""
if activation == "relu":
return F.relu
if activation == "gelu":
return F.gelu
if activation == "glu":
return F.glu
if activation == "prelu":
return nn.PReLU()
if activation == "selu":
return F.selu
raise RuntimeError(F"activation should be relu/gelu, not {activation}.")
|