File size: 37,671 Bytes
16dc4f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
"""
DETR Transformer class.

Copy-paste from torch.nn.Transformer with modifications:
    * positional encodings are passed in MHattention
    * extra LN at the end of encoder is removed
    * decoder returns a stack of activations from all decoding layers
"""
import copy
from typing import Optional
import torch
import torch.nn.functional as F
from torch import nn, Tensor
import math
import numpy as np
from .attention import MultiheadAttention
from .crossattention import MultiheadAttention as cateattention

class MLP(nn.Module):
    """ Very simple multi-layer perceptron (also called FFN)"""

    def __init__(self, input_dim, hidden_dim, output_dim, num_layers):
        super().__init__()
        self.num_layers = num_layers
        h = [hidden_dim] * (num_layers - 1)
        self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))

    def forward(self, x):
        for i, layer in enumerate(self.layers):
            x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
        return x

def inverse_sigmoid(x, eps=1e-3):
    x = x.clamp(min=0, max=1)
    x1 = x.clamp(min=eps)
    x2 = (1 - x).clamp(min=eps)
    return torch.log(x1/x2)

def gen_sineembed_for_position(pos_tensor, d_model):
    # n_query, bs, _ = pos_tensor.size()
    # sineembed_tensor = torch.zeros(n_query, bs, 256)
    scale = 2 * math.pi
    dim_t = torch.arange(d_model//2, dtype=torch.float32, device=pos_tensor.device)
    dim_t = 10000 ** (2 * (dim_t // 2) / (d_model//2))
    center_embed = pos_tensor[:, :, 0] * scale
    pos_x = center_embed[:, :, None] / dim_t
    pos_x = torch.stack((pos_x[:, :, 0::2].sin(), pos_x[:, :, 1::2].cos()), dim=3).flatten(2)

    span_embed = pos_tensor[:, :, 1] * scale
    pos_w = span_embed[:, :, None] / dim_t
    pos_w = torch.stack((pos_w[:, :, 0::2].sin(), pos_w[:, :, 1::2].cos()), dim=3).flatten(2)

    pos = torch.cat((pos_x, pos_w), dim=2)
    return pos

class Transformer(nn.Module):

    def __init__(self, d_model=512, nhead=8, num_queries=2, num_encoder_layers=6,
                 num_decoder_layers=6, dim_feedforward=2048, dropout=0.1,
                 activation="relu", normalize_before=False,
                 return_intermediate_dec=False, query_dim=2,
                 keep_query_pos=False, query_scale_type='cond_elewise',
                 num_patterns=0,
                 modulate_t_attn=True,
                 bbox_embed_diff_each_layer=False, args=None
                 ):
        super().__init__()
        self.args = args
        mcls_encoder_layer = TransformerEncoderLayer(d_model, nhead, dim_feedforward,
                                                dropout, activation, normalize_before)
        mcls_encoder_norm = nn.LayerNorm(d_model) if normalize_before else None
        self.mcls_encoder = TransformerEncoder(mcls_encoder_layer, args.moment_layers, mcls_encoder_norm)

        t2v_encoder_layer = T2V_TransformerEncoderLayer(d_model, nhead, dim_feedforward,
                                                dropout, activation, normalize_before, self.args.num_dummies)
        encoder_norm = nn.LayerNorm(d_model) if normalize_before else None
        self.t2v_encoder = TransformerCATEEncoder(t2v_encoder_layer, args.t2v_layers, encoder_norm)

        encoder_layer = TransformerEncoderLayer(d_model, nhead, dim_feedforward,
                                                dropout, activation, normalize_before)
        encoder_norm = nn.LayerNorm(d_model) if normalize_before else None
        self.encoder = TransformerEncoder(encoder_layer, num_encoder_layers, encoder_norm)

        decoder_layer = TransformerDecoderLayer(d_model, nhead, dim_feedforward,
                                                dropout, activation, normalize_before, keep_query_pos=keep_query_pos)
        decoder_norm = nn.LayerNorm(d_model)
        self.decoder = TransformerDecoder(decoder_layer, num_decoder_layers, decoder_norm,
                                          return_intermediate=return_intermediate_dec,
                                          d_model=d_model, query_dim=query_dim, keep_query_pos=keep_query_pos, query_scale_type=query_scale_type,
                                          modulate_t_attn=modulate_t_attn,
                                          bbox_embed_diff_each_layer=bbox_embed_diff_each_layer)

        self._reset_parameters()

        self.d_model = d_model
        self.nhead = nhead
        self.dec_layers = num_decoder_layers
        self.num_queries = num_queries
        self.num_patterns = num_patterns

    def _reset_parameters(self):
        for p in self.parameters():
            if p.dim() > 1:
                nn.init.xavier_uniform_(p)

    def forward(self, src, mask, query_embed, pos_embed, video_length=None, moment_idx=None, msrc=None, mpos=None, mmask=None,
                nmsrc=None, nmpos=None, nmmask=None,
                ctxtoken=None, gtoken=None, gpos=None, vlen=None):
        """
        Args:
            src: (batch_size, L, d)
            mask: (batch_size, L)
            query_embed: (#queries, d)
            pos_embed: (batch_size, L, d) the same as src
            video length: feature shape
            vlen: actual video length
        Returns:
        """
        # moment token
        device = ctxtoken.device
        if msrc is not None:
            msrc = msrc.permute(1, 0, 2)  # (L, batch_size, d)
            mpos = mpos.permute(1, 0, 2)  # (L, batch_size, d)
            mmemory = self.mcls_encoder(msrc, src_key_padding_mask=mmask, pos=mpos)  # (L, batch_size, d)
            mmemory_moment, mmemory_frames = mmemory[0], mmemory[1:]
        else:
            mmemory_moment = None
            mmemory_frames = None
        if nmsrc is not None:
            nmsrc = nmsrc.permute(1, 0, 2)  # (L, batch_size, d)
            nmpos = nmpos.permute(1, 0, 2)  # (L, batch_size, d)
            nmmemory = self.mcls_encoder(nmsrc, src_key_padding_mask=nmmask, pos=nmpos)  # (L, batch_size, d)
            nmmemory_moment, nmmemory_frames = nmmemory[0], nmmemory[1:]
        else:
            nmmemory_moment = None
            nmmemory_frames = None

        # flatten NxCxHxW to HWxNxC
        bs, l, d = src.shape
        src = src.permute(1, 0, 2)  # (L, batch_size, d)
        pos_embed = pos_embed.permute(1, 0, 2)   # (L, batch_size, d)
        refpoint_embed = query_embed.unsqueeze(1).repeat(1, bs, 1)  # (#queries, batch_size, d)

        # import pdb; pdb.set_trace()
        # print(src.dtype)
        t2v_src, attn_weights = self.t2v_encoder(src, src_key_padding_mask=mask, pos=pos_embed, video_length=video_length)  # (L, batch_size, d)

        # Saliency Token
        ## Context
        ctx_src_ = ctxtoken.permute(1, 0, 2) # L b d

        ## Distribution Token with 10 prompt tokens
        ### Video Clip featre - context (avg) --> Find top 10 similar tokens --> weighted sum
        # import pdb; pdb.set_trace()
        fr_token_sim = torch.softmax(torch.matmul(F.normalize((src[:video_length] - ctx_src_).permute(1, 0, 2), dim=2), F.normalize(gtoken, dim=1).T), dim=-1)# src : b 75 d, token : 10 x d --> b 75 10
        ### Calculate clip importance
        frame_importance = attn_weights[:, :, self.args.num_dummies:].sum(2).clone().detach()  # b 75
        ### Masking empty clips
        for i in range(len(frame_importance)):
            frame_importance[i][vlen[i]:] *= 0.
        ### Normalize
        frame_importance = (frame_importance / frame_importance.sum(1).unsqueeze(1)) * frame_importance.size(1)  # b 75
        ### Scale the similarity with importance
        fr_token_sim = fr_token_sim * frame_importance.unsqueeze(2).repeat(1, 1, fr_token_sim.size(2))  # b 75 10
        fr_token_sim = fr_token_sim.mean(1) # b 10
        topk_val, topkidx = torch.topk(fr_token_sim, k=self.args.num_prompts, dim=1)
        src_ = torch.zeros((len(fr_token_sim), self.d_model), dtype=torch.bfloat16).to(device)
        for i in range(len(fr_token_sim)):
            src_[i] = (topk_val[i].unsqueeze(1) * gtoken[topkidx[i]]).sum(0)
        src_ = src_.reshape(1, src.size(1), -1)

        ## Add context and distribution token
        src_ = src_ + ctx_src_
        pos_ = gpos.reshape([1, 1, self.d_model]).repeat(1, pos_embed.shape[1], 1)
        mask_ = torch.tensor([[False]]).to(mask.device).repeat(mask.shape[0], 1)

        # import pdb; pdb.set_trace()
        src_, _ = self.t2v_encoder(src_, src_key_padding_mask=mask_, pos=pos_,
                                             video_length=video_length, dummy=False)  # (L, batch_size, d)

        src = torch.cat([src_, t2v_src], dim=0)
        mask = torch.cat([mask_, mask], dim=1)
        pos_embed = torch.cat([pos_, pos_embed], dim=0)

        src = src[:video_length + 1]
        mask = mask[:, :video_length + 1]
        pos_embed = pos_embed[:video_length + 1]

        memory = self.encoder(src, src_key_padding_mask=mask, pos=pos_embed)  # (L, batch_size, d)
        memory_global, memory_local = memory[0], memory[1:]
        memory_local += memory_global.unsqueeze(0).repeat(memory_local.size(0), 1, 1)
        mask_local = mask[:, 1:]
        pos_embed_local = pos_embed[1:]

        tgt = torch.zeros(refpoint_embed.shape[0], bs, d).to(device)
        tgt = tgt.type(torch.bfloat16)

        # import pdb; pdb.set_trace()
        hs, references = self.decoder(tgt, memory_local, memory_key_padding_mask=mask_local, pos=pos_embed_local, refpoints_unsigmoid=refpoint_embed)  # (#layers, #queries, batch_size, d)
        memory_local = memory_local.transpose(0, 1)  # (batch_size, L, d)

        return hs, references, memory_local, memory_global, attn_weights, mmemory_moment, nmmemory_moment, mmemory_frames, nmmemory_frames


class TransformerCATEEncoder(nn.Module):
    def __init__(self, encoder_layer, num_layers, norm=None, return_intermediate=False):
        super().__init__()
        self.layers = _get_clones(encoder_layer, num_layers)
        self.num_layers = num_layers
        self.norm = norm
        self.return_intermediate = return_intermediate

    def forward(self, src,
                mask: Optional[Tensor] = None,
                src_key_padding_mask: Optional[Tensor] = None,
                pos: Optional[Tensor] = None,
                dummy=True,
                **kwargs):
        output = src

        intermediate = []
        attn_weights = None
        for i, layer in enumerate(self.layers):
            output, attn_weight = layer(output, src_mask=mask,
                           src_key_padding_mask=src_key_padding_mask, pos=pos, dummy=dummy, **kwargs)
            if attn_weights is None:
                attn_weights = attn_weight
            else:
                attn_weights = attn_weights + attn_weight
            if self.return_intermediate:
                intermediate.append(output)
        attn_weights /= self.num_layers

        if self.norm is not None:
            output = self.norm(output)

        if self.return_intermediate:
            return torch.stack(intermediate)

        return output, attn_weights

class TransformerEncoder(nn.Module):

    def __init__(self, encoder_layer, num_layers, norm=None, return_intermediate=False):
        super().__init__()
        self.layers = _get_clones(encoder_layer, num_layers)
        self.num_layers = num_layers
        self.norm = norm
        self.return_intermediate = return_intermediate

    def forward(self, src,
                mask: Optional[Tensor] = None,
                src_key_padding_mask: Optional[Tensor] = None,
                pos: Optional[Tensor] = None,
                **kwargs):
        output = src

        intermediate = []

        for layer in self.layers:
            output = layer(output, src_mask=mask,
                           src_key_padding_mask=src_key_padding_mask, pos=pos, **kwargs)
            if self.return_intermediate:
                intermediate.append(output)

        if self.norm is not None:
            output = self.norm(output)

        if self.return_intermediate:
            return torch.stack(intermediate)

        return output


class TransformerDecoder(nn.Module):

    def __init__(self, decoder_layer, num_layers, norm=None, return_intermediate=False,
                 d_model=256, query_dim=2, keep_query_pos=False, query_scale_type='cond_elewise',
                 modulate_t_attn=False,
                 bbox_embed_diff_each_layer=False,
                 ):
        super().__init__()
        self.layers = _get_clones(decoder_layer, num_layers)
        self.num_layers = num_layers
        self.norm = norm
        self.return_intermediate = return_intermediate
        assert return_intermediate
        self.query_dim = query_dim

        assert query_scale_type in ['cond_elewise', 'cond_scalar', 'fix_elewise']
        self.query_scale_type = query_scale_type
        if query_scale_type == 'cond_elewise':
            self.query_scale = MLP(d_model, d_model, d_model, 2)
        elif query_scale_type == 'cond_scalar':
            self.query_scale = MLP(d_model, d_model, 1, 2)
        elif query_scale_type == 'fix_elewise':
            self.query_scale = nn.Embedding(num_layers, d_model)
        else:
            raise NotImplementedError("Unknown query_scale_type: {}".format(query_scale_type))

        self.ref_point_head = MLP(d_model, d_model, d_model, 2)

        # self.bbox_embed = None
        # for DAB-detr
        if bbox_embed_diff_each_layer:
            self.bbox_embed = nn.ModuleList([MLP(d_model, d_model, 2, 3) for i in range(num_layers)])
        else:
            self.bbox_embed = MLP(d_model, d_model, 2, 3)
        # init bbox_embed
        if bbox_embed_diff_each_layer:
            for bbox_embed in self.bbox_embed:
                nn.init.constant_(bbox_embed.layers[-1].weight.data, 0)
                nn.init.constant_(bbox_embed.layers[-1].bias.data, 0)
        else:
            nn.init.constant_(self.bbox_embed.layers[-1].weight.data, 0)
            nn.init.constant_(self.bbox_embed.layers[-1].bias.data, 0)
        self.d_model = d_model
        self.modulate_t_attn = modulate_t_attn
        self.bbox_embed_diff_each_layer = bbox_embed_diff_each_layer

        if modulate_t_attn:
            self.ref_anchor_head = MLP(d_model, d_model, 1, 2)

        if not keep_query_pos:
            for layer_id in range(num_layers - 1):
                self.layers[layer_id + 1].ca_qpos_proj = None

    def forward(self, tgt, memory,
                tgt_mask: Optional[Tensor] = None,
                memory_mask: Optional[Tensor] = None,
                tgt_key_padding_mask: Optional[Tensor] = None,
                memory_key_padding_mask: Optional[Tensor] = None,
                pos: Optional[Tensor] = None,
                refpoints_unsigmoid: Optional[Tensor] = None,  # num_queries, bs, 2
                ):
        output = tgt

        intermediate = []
        reference_points = refpoints_unsigmoid.sigmoid()
        ref_points = [reference_points]

        # import pdb; pdb.set_trace()

        for layer_id, layer in enumerate(self.layers):
            obj_center = reference_points[..., :self.query_dim]
            # get sine embedding for the query vector
            query_sine_embed = gen_sineembed_for_position(obj_center, self.d_model)
            query_sine_embed = query_sine_embed.type(torch.bfloat16)

            query_pos = self.ref_point_head(query_sine_embed)
            # For the first decoder layer, we do not apply transformation over p_s
            if self.query_scale_type != 'fix_elewise':
                if layer_id == 0:
                    pos_transformation = 1
                else:
                    pos_transformation = self.query_scale(output)
            else:
                pos_transformation = self.query_scale.weight[layer_id]

            # apply transformation
            query_sine_embed = query_sine_embed * pos_transformation

            # modulated HW attentions
            if self.modulate_t_attn:
                reft_cond = self.ref_anchor_head(output).sigmoid()  # nq, bs, 1

                query_sine_embed *= (reft_cond[..., 0] / obj_center[..., 1]).unsqueeze(-1)


            output = layer(output, memory, tgt_mask=tgt_mask,
                           memory_mask=memory_mask,
                           tgt_key_padding_mask=tgt_key_padding_mask,
                           memory_key_padding_mask=memory_key_padding_mask,
                           pos=pos, query_pos=query_pos, query_sine_embed=query_sine_embed,
                           is_first=(layer_id == 0))

            # iter update
            if self.bbox_embed is not None:
                if self.bbox_embed_diff_each_layer:
                    tmp = self.bbox_embed[layer_id](output)
                else:
                    tmp = self.bbox_embed(output)
                # import ipdb; ipdb.set_trace()
                tmp[..., :self.query_dim] += inverse_sigmoid(reference_points)
                new_reference_points = tmp[..., :self.query_dim].sigmoid()
                if layer_id != self.num_layers - 1:
                    ref_points.append(new_reference_points)
                reference_points = new_reference_points.detach()

            if self.return_intermediate:
                intermediate.append(self.norm(output))

        if self.norm is not None:
            output = self.norm(output)
            if self.return_intermediate:
                intermediate.pop()
                intermediate.append(output)

        if self.return_intermediate:
            if self.bbox_embed is not None:
                return [
                    torch.stack(intermediate).transpose(1, 2),
                    torch.stack(ref_points).transpose(1, 2),
                ]
            else:
                return [
                    torch.stack(intermediate).transpose(1, 2),
                    reference_points.unsqueeze(0).transpose(1, 2)
                ]

        return output.unsqueeze(0)


class TransformerEncoderLayerThin(nn.Module):

    def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1,
                 activation="relu", normalize_before=False):
        super().__init__()
        self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
        # Implementation of Feedforward model
        # self.linear1 = nn.Linear(d_model, dim_feedforward)
        # self.dropout = nn.Dropout(dropout)
        # self.linear2 = nn.Linear(dim_feedforward, d_model)
        self.linear = nn.Linear(d_model, d_model)
        self.norm = nn.LayerNorm(d_model)
        self.dropout = nn.Dropout(dropout)

        # self.activation = _get_activation_fn(activation)
        self.normalize_before = normalize_before

    def with_pos_embed(self, tensor, pos: Optional[Tensor]):
        return tensor if pos is None else tensor + pos

    def forward_post(self,
                     src,
                     src_mask: Optional[Tensor] = None,
                     src_key_padding_mask: Optional[Tensor] = None,
                     pos: Optional[Tensor] = None):
        q = k = self.with_pos_embed(src, pos)
        src2 = self.self_attn(q, k, value=src, attn_mask=src_mask,
                              key_padding_mask=src_key_padding_mask)[0]
        src2 = self.linear(src2)
        src = src + self.dropout(src2)
        src = self.norm(src)
        # src = src + self.dropout1(src2)
        # src = self.norm1(src)
        # src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
        # src = src + self.dropout2(src2)
        # src = self.norm2(src)
        return src

    def forward_pre(self, src,
                    src_mask: Optional[Tensor] = None,
                    src_key_padding_mask: Optional[Tensor] = None,
                    pos: Optional[Tensor] = None):
        """not used"""
        src2 = self.norm1(src)
        q = k = self.with_pos_embed(src2, pos)
        src2 = self.self_attn(q, k, value=src2, attn_mask=src_mask,
                              key_padding_mask=src_key_padding_mask)[0]
        src = src + self.dropout1(src2)
        src2 = self.norm2(src)
        src2 = self.linear2(self.dropout(self.activation(self.linear1(src2))))
        src = src + self.dropout2(src2)
        return src

    def forward(self, src,
                src_mask: Optional[Tensor] = None,
                src_key_padding_mask: Optional[Tensor] = None,
                pos: Optional[Tensor] = None):
        if self.normalize_before:
            return self.forward_pre(src, src_mask, src_key_padding_mask, pos)
        return self.forward_post(src, src_mask, src_key_padding_mask, pos)


class T2V_TransformerEncoderLayer(nn.Module):

    def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1,
                 activation="relu", normalize_before=False, num_dummies=3):
        super().__init__()
        self.self_attn = cateattention(d_model, nhead, dropout=dropout, num_dummies=num_dummies)
        # Implementation of Feedforward model
        self.linear1 = nn.Linear(d_model, dim_feedforward)
        self.dropout = nn.Dropout(dropout)
        self.linear2 = nn.Linear(dim_feedforward, d_model)

        self.norm1 = nn.LayerNorm(d_model)
        self.norm2 = nn.LayerNorm(d_model)
        self.dropout1 = DropPath(dropout)
        self.dropout2 = DropPath(dropout)

        self.activation = _get_activation_fn(activation)
        self.normalize_before = normalize_before
        self.nhead = nhead

    def with_pos_embed(self, tensor, pos: Optional[Tensor]):
        return tensor if pos is None else tensor + pos

    def forward_post(self,
                     src,
                     src_mask: Optional[Tensor] = None,
                     src_key_padding_mask: Optional[Tensor] = None,
                     pos: Optional[Tensor] = None,
                     video_length=None, dummy=True):
        assert video_length is not None
        pos_src = self.with_pos_embed(src, pos)
        q, k, v = pos_src[:video_length], pos_src[video_length:], src[video_length:]

        qmask, kmask = src_key_padding_mask[:, :video_length].unsqueeze(2), src_key_padding_mask[:, video_length:].unsqueeze(1)
        attn_mask = torch.matmul(qmask.float(), kmask.float()).bool().repeat(self.nhead, 1, 1)

        # - key_padding_mask: :math:`(S)` or :math:`(N, S)` where N is the batch size, S is the source sequence length.
        #   If a FloatTensor is provided, it will be directly added to the value.
        #   If a BoolTensor is provided, the positions with the
        #   value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
        # - attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
        #   3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length,
        #   S is the source sequence length. attn_mask ensures that position i is allowed to attend the unmasked
        #   positions. If a BoolTensor is provided, positions with ``True``
        #   are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
        #   is provided, it will be added to the attention weight.
        # print(q.shape, k.shape, v.shape, attn_mask.shape, src_key_padding_mask[:, video_length + 1:].shape)

        # import pdb; pdb.set_trace()
        src2, attn_weights = self.self_attn(q, k, v, attn_mask=attn_mask, key_padding_mask=src_key_padding_mask[:, video_length:], dummy=dummy)

        src2 = src[:video_length] + self.dropout1(src2)
        src3 = self.norm1(src2)
        src3 = self.linear2(self.dropout(self.activation(self.linear1(src3))))
        src2 = src2 + self.dropout2(src3)
        src2 = self.norm2(src2)

        src = torch.cat([src2, src[video_length:]])
        return src, attn_weights

    def forward_pre(self, src,
                    src_mask: Optional[Tensor] = None,
                    src_key_padding_mask: Optional[Tensor] = None,
                    pos: Optional[Tensor] = None, dummy=True):
        pass


    def forward(self, src,
                src_mask: Optional[Tensor] = None,
                src_key_padding_mask: Optional[Tensor] = None,
                pos: Optional[Tensor] = None, dummy=True,
                **kwargs):
        if self.normalize_before:
            return self.forward_pre(src, src_mask, src_key_padding_mask, pos, dummy=dummy)
        return self.forward_post(src, src_mask, src_key_padding_mask, pos, dummy=dummy, **kwargs)

class TransformerEncoderLayer(nn.Module):
    def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1,
                 activation="relu", normalize_before=False):
        super().__init__()
        self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
        # Implementation of Feedforward model
        self.linear1 = nn.Linear(d_model, dim_feedforward)
        self.dropout = nn.Dropout(dropout)
        self.linear2 = nn.Linear(dim_feedforward, d_model)

        self.norm1 = nn.LayerNorm(d_model)
        self.norm2 = nn.LayerNorm(d_model)
        self.dropout1 = DropPath(dropout)
        self.dropout2 = DropPath(dropout)

        self.activation = _get_activation_fn(activation)
        self.normalize_before = normalize_before

    def with_pos_embed(self, tensor, pos: Optional[Tensor]):
        return tensor if pos is None else tensor + pos

    def forward_post(self,
                     src,
                     src_mask: Optional[Tensor] = None,
                     src_key_padding_mask: Optional[Tensor] = None,
                     pos: Optional[Tensor] = None):
        q = k = self.with_pos_embed(src, pos)
        src2 = self.self_attn(q, k, value=src, attn_mask=src_mask,
                              key_padding_mask=src_key_padding_mask)[0]
        src = src + self.dropout1(src2)
        src = self.norm1(src)
        src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
        src = src + self.dropout2(src2)
        src = self.norm2(src)
        return src

    def forward_pre(self, src,
                    src_mask: Optional[Tensor] = None,
                    src_key_padding_mask: Optional[Tensor] = None,
                    pos: Optional[Tensor] = None):
        pass

    def forward(self, src,
                src_mask: Optional[Tensor] = None,
                src_key_padding_mask: Optional[Tensor] = None,
                pos: Optional[Tensor] = None):
        if self.normalize_before:
            return self.forward_pre(src, src_mask, src_key_padding_mask, pos)
        return self.forward_post(src, src_mask, src_key_padding_mask, pos)


class TransformerDecoderLayer(nn.Module):

    def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1,
                 activation="relu", normalize_before=False, keep_query_pos=False,
                 rm_self_attn_decoder=False):
        super().__init__()
        # Decoder Self-Attention
        if not rm_self_attn_decoder:
            self.sa_qcontent_proj = nn.Linear(d_model, d_model)
            self.sa_qpos_proj = nn.Linear(d_model, d_model)
            self.sa_kcontent_proj = nn.Linear(d_model, d_model)
            self.sa_kpos_proj = nn.Linear(d_model, d_model)
            self.sa_v_proj = nn.Linear(d_model, d_model)
            self.self_attn = MultiheadAttention(d_model, nhead, dropout=dropout, vdim=d_model)

            self.norm1 = nn.LayerNorm(d_model)
            self.dropout1 = DropPath(dropout)

        # Decoder Cross-Attention
        self.ca_qcontent_proj = nn.Linear(d_model, d_model)
        self.ca_qpos_proj = nn.Linear(d_model, d_model)
        self.ca_kcontent_proj = nn.Linear(d_model, d_model)
        self.ca_kpos_proj = nn.Linear(d_model, d_model)
        self.ca_v_proj = nn.Linear(d_model, d_model)
        self.ca_qpos_sine_proj = nn.Linear(d_model, d_model)
        self.cross_attn = MultiheadAttention(d_model * 2, nhead, dropout=dropout, vdim=d_model)

        self.nhead = nhead
        self.rm_self_attn_decoder = rm_self_attn_decoder

        # Implementation of Feedforward model
        self.linear1 = nn.Linear(d_model, dim_feedforward)
        self.dropout = nn.Dropout(dropout)
        self.linear2 = nn.Linear(dim_feedforward, d_model)

        self.norm2 = nn.LayerNorm(d_model)
        self.norm3 = nn.LayerNorm(d_model)
        self.dropout2 = DropPath(dropout)
        self.dropout3 = DropPath(dropout)

        self.activation = _get_activation_fn(activation)
        self.normalize_before = normalize_before
        self.keep_query_pos = keep_query_pos

    def with_pos_embed(self, tensor, pos: Optional[Tensor]):
        return tensor if pos is None else tensor + pos

    def forward(self, tgt, memory,
                tgt_mask: Optional[Tensor] = None,
                memory_mask: Optional[Tensor] = None,
                tgt_key_padding_mask: Optional[Tensor] = None,
                memory_key_padding_mask: Optional[Tensor] = None,
                pos: Optional[Tensor] = None,
                query_pos: Optional[Tensor] = None,
                query_sine_embed=None,
                is_first=False):

        # ========== Begin of Self-Attention =============
        if not self.rm_self_attn_decoder:
            # Apply projections here
            # shape: num_queries x batch_size x 256
            q_content = self.sa_qcontent_proj(tgt)  # target is the input of the first decoder layer. zero by default.
            q_pos = self.sa_qpos_proj(query_pos)
            k_content = self.sa_kcontent_proj(tgt)
            k_pos = self.sa_kpos_proj(query_pos)
            v = self.sa_v_proj(tgt)

            num_queries, bs, n_model = q_content.shape
            hw, _, _ = k_content.shape

            q = q_content + q_pos
            k = k_content + k_pos

            tgt2 = self.self_attn(q, k, value=v, attn_mask=tgt_mask,
                                  key_padding_mask=tgt_key_padding_mask)[0]
            # ========== End of Self-Attention =============

            tgt = tgt + self.dropout1(tgt2)
            tgt = self.norm1(tgt)

        # ========== Begin of Cross-Attention =============
        # Apply projections here
        # shape: num_queries x batch_size x 256
        q_content = self.ca_qcontent_proj(tgt)
        k_content = self.ca_kcontent_proj(memory)
        v = self.ca_v_proj(memory)

        num_queries, bs, n_model = q_content.shape
        hw, _, _ = k_content.shape

        k_pos = self.ca_kpos_proj(pos)

        # For the first decoder layer, we concatenate the positional embedding predicted from
        # the object query (the positional embedding) into the original query (key) in DETR.
        if is_first or self.keep_query_pos:
            q_pos = self.ca_qpos_proj(query_pos)
            q = q_content + q_pos
            k = k_content + k_pos
        else:
            q = q_content
            k = k_content

        q = q.view(num_queries, bs, self.nhead, n_model // self.nhead)
        query_sine_embed = self.ca_qpos_sine_proj(query_sine_embed)
        query_sine_embed = query_sine_embed.view(num_queries, bs, self.nhead, n_model // self.nhead)
        q = torch.cat([q, query_sine_embed], dim=3).view(num_queries, bs, n_model * 2)
        k = k.view(hw, bs, self.nhead, n_model // self.nhead)
        k_pos = k_pos.view(hw, bs, self.nhead, n_model // self.nhead)
        k = torch.cat([k, k_pos], dim=3).view(hw, bs, n_model * 2)

        tgt2 = self.cross_attn(query=q,
                               key=k,
                               value=v, attn_mask=memory_mask,
                               key_padding_mask=memory_key_padding_mask)[0]
        # ========== End of Cross-Attention =============

        tgt = tgt + self.dropout2(tgt2)
        tgt = self.norm2(tgt)
        tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
        tgt = tgt + self.dropout3(tgt2)
        tgt = self.norm3(tgt)
        return tgt


class TransformerDecoderLayerThin(nn.Module):
    """removed intermediate layer"""
    def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1,
                 activation="relu", normalize_before=False):
        super().__init__()
        self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
        self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
        # Implementation of Feedforward model
        self.linear1 = nn.Linear(d_model, d_model)


        self.norm1 = nn.LayerNorm(d_model)
        self.norm2 = nn.LayerNorm(d_model)
        # self.norm3 = nn.LayerNorm(d_model)
        self.dropout1 = DropPath(dropout)
        self.dropout2 = DropPath(dropout)


        # self.activation = _get_activation_fn(activation)
        self.normalize_before = normalize_before

    def with_pos_embed(self, tensor, pos: Optional[Tensor]):
        return tensor if pos is None else tensor + pos

    def forward_post(self, tgt, memory,
                     tgt_mask: Optional[Tensor] = None,
                     memory_mask: Optional[Tensor] = None,
                     tgt_key_padding_mask: Optional[Tensor] = None,
                     memory_key_padding_mask: Optional[Tensor] = None,
                     pos: Optional[Tensor] = None,
                     query_pos: Optional[Tensor] = None):
        q = k = self.with_pos_embed(tgt, query_pos)
        tgt2 = self.self_attn(q, k, value=tgt, attn_mask=tgt_mask,
                              key_padding_mask=tgt_key_padding_mask)[0]
        tgt = tgt + self.dropout1(tgt2)
        tgt = self.norm1(tgt)
        tgt2 = self.multihead_attn(query=self.with_pos_embed(tgt, query_pos),
                                   key=self.with_pos_embed(memory, pos),
                                   value=memory, attn_mask=memory_mask,
                                   key_padding_mask=memory_key_padding_mask)[0]
        tgt2 = self.linear1(tgt2)
        tgt = tgt + self.dropout2(tgt2)
        tgt = self.norm2(tgt)
        return tgt

    def forward_pre(self, tgt, memory,
                    tgt_mask: Optional[Tensor] = None,
                    memory_mask: Optional[Tensor] = None,
                    tgt_key_padding_mask: Optional[Tensor] = None,
                    memory_key_padding_mask: Optional[Tensor] = None,
                    pos: Optional[Tensor] = None,
                    query_pos: Optional[Tensor] = None):
        tgt2 = self.norm1(tgt)
        q = k = self.with_pos_embed(tgt2, query_pos)
        tgt2 = self.self_attn(q, k, value=tgt2, attn_mask=tgt_mask,
                              key_padding_mask=tgt_key_padding_mask)[0]
        tgt = tgt + self.dropout1(tgt2)
        tgt2 = self.norm2(tgt)
        tgt2 = self.multihead_attn(query=self.with_pos_embed(tgt2, query_pos),
                                   key=self.with_pos_embed(memory, pos),
                                   value=memory, attn_mask=memory_mask,
                                   key_padding_mask=memory_key_padding_mask)[0]
        tgt = tgt + self.dropout2(tgt2)
        tgt2 = self.norm3(tgt)
        tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
        tgt = tgt + self.dropout3(tgt2)
        return tgt

    def forward(self, tgt, memory,
                tgt_mask: Optional[Tensor] = None,
                memory_mask: Optional[Tensor] = None,
                tgt_key_padding_mask: Optional[Tensor] = None,
                memory_key_padding_mask: Optional[Tensor] = None,
                pos: Optional[Tensor] = None,
                query_pos: Optional[Tensor] = None):
        if self.normalize_before:
            return self.forward_pre(tgt, memory, tgt_mask, memory_mask,
                                    tgt_key_padding_mask, memory_key_padding_mask, pos, query_pos)
        return self.forward_post(tgt, memory, tgt_mask, memory_mask,
                                 tgt_key_padding_mask, memory_key_padding_mask, pos, query_pos)



def _get_clones(module, N):
    return nn.ModuleList([copy.deepcopy(module) for i in range(N)])


def build_transformer(args):
    return Transformer(
        d_model=args.hidden_dim,
        dropout=args.dropout,
        nhead=args.nheads,
        dim_feedforward=args.dim_feedforward,
        num_encoder_layers=args.enc_layers,
        num_decoder_layers=args.dec_layers,
        normalize_before=args.pre_norm,
        return_intermediate_dec=True,
        activation='prelu',
        args=args
    )

def drop_path(x, drop_prob=0.0, training=False):
    """
    Stochastic Depth per sample.
    """
    if drop_prob == 0.0 or not training:
        return x

    keep_prob = 1 - drop_prob
    shape = (x.shape[0],) + (1,) * (x.ndim - 1)
    mask = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
    mask.floor_()
    x = x.div(keep_prob) * mask

    return x

class DropPath(nn.Module):
    """
    Drop paths per sample (when applied in main path of residual blocks).
    """

    def __init__(self, drop_prob=None):
        super(DropPath, self).__init__()

        self.drop_prob = drop_prob

    def forward(self, x):
        x = x.permute(1, 0, 2)
        res = drop_path(x, self.drop_prob, self.training)
        return res.permute(1, 0, 2)

def _get_activation_fn(activation):
    """Return an activation function given a string"""
    if activation == "relu":
        return F.relu
    if activation == "gelu":
        return F.gelu
    if activation == "glu":
        return F.glu
    if activation == "prelu":
        return nn.PReLU()
    if activation == "selu":
        return F.selu
    raise RuntimeError(F"activation should be relu/gelu, not {activation}.")