Create demo.py
Browse files
demo.py
ADDED
|
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoModel, AutoTokenizer
|
| 2 |
+
|
| 3 |
+
# model setting
|
| 4 |
+
model_path = 'OpenGVLab/InternVideo2_5_Chat_8B'
|
| 5 |
+
|
| 6 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
| 7 |
+
model = AutoModel.from_pretrained(model_path, trust_remote_code=True).half().cuda()
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def build_transform(input_size):
|
| 11 |
+
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
|
| 12 |
+
transform = T.Compose([T.Lambda(lambda img: img.convert("RGB") if img.mode != "RGB" else img), T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), T.ToTensor(), T.Normalize(mean=MEAN, std=STD)])
|
| 13 |
+
return transform
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
|
| 17 |
+
best_ratio_diff = float("inf")
|
| 18 |
+
best_ratio = (1, 1)
|
| 19 |
+
area = width * height
|
| 20 |
+
for ratio in target_ratios:
|
| 21 |
+
target_aspect_ratio = ratio[0] / ratio[1]
|
| 22 |
+
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
|
| 23 |
+
if ratio_diff < best_ratio_diff:
|
| 24 |
+
best_ratio_diff = ratio_diff
|
| 25 |
+
best_ratio = ratio
|
| 26 |
+
elif ratio_diff == best_ratio_diff:
|
| 27 |
+
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
|
| 28 |
+
best_ratio = ratio
|
| 29 |
+
return best_ratio
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
def dynamic_preprocess(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False):
|
| 33 |
+
orig_width, orig_height = image.size
|
| 34 |
+
aspect_ratio = orig_width / orig_height
|
| 35 |
+
|
| 36 |
+
# calculate the existing image aspect ratio
|
| 37 |
+
target_ratios = set((i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if i * j <= max_num and i * j >= min_num)
|
| 38 |
+
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
|
| 39 |
+
|
| 40 |
+
# find the closest aspect ratio to the target
|
| 41 |
+
target_aspect_ratio = find_closest_aspect_ratio(aspect_ratio, target_ratios, orig_width, orig_height, image_size)
|
| 42 |
+
|
| 43 |
+
# calculate the target width and height
|
| 44 |
+
target_width = image_size * target_aspect_ratio[0]
|
| 45 |
+
target_height = image_size * target_aspect_ratio[1]
|
| 46 |
+
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
|
| 47 |
+
|
| 48 |
+
# resize the image
|
| 49 |
+
resized_img = image.resize((target_width, target_height))
|
| 50 |
+
processed_images = []
|
| 51 |
+
for i in range(blocks):
|
| 52 |
+
box = ((i % (target_width // image_size)) * image_size, (i // (target_width // image_size)) * image_size, ((i % (target_width // image_size)) + 1) * image_size, ((i // (target_width // image_size)) + 1) * image_size)
|
| 53 |
+
# split the image
|
| 54 |
+
split_img = resized_img.crop(box)
|
| 55 |
+
processed_images.append(split_img)
|
| 56 |
+
assert len(processed_images) == blocks
|
| 57 |
+
if use_thumbnail and len(processed_images) != 1:
|
| 58 |
+
thumbnail_img = image.resize((image_size, image_size))
|
| 59 |
+
processed_images.append(thumbnail_img)
|
| 60 |
+
return processed_images
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
def load_image(image, input_size=448, max_num=6):
|
| 64 |
+
transform = build_transform(input_size=input_size)
|
| 65 |
+
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
|
| 66 |
+
pixel_values = [transform(image) for image in images]
|
| 67 |
+
pixel_values = torch.stack(pixel_values)
|
| 68 |
+
return pixel_values
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
def get_index(bound, fps, max_frame, first_idx=0, num_segments=32):
|
| 72 |
+
if bound:
|
| 73 |
+
start, end = bound[0], bound[1]
|
| 74 |
+
else:
|
| 75 |
+
start, end = -100000, 100000
|
| 76 |
+
start_idx = max(first_idx, round(start * fps))
|
| 77 |
+
end_idx = min(round(end * fps), max_frame)
|
| 78 |
+
seg_size = float(end_idx - start_idx) / num_segments
|
| 79 |
+
frame_indices = np.array([int(start_idx + (seg_size / 2) + np.round(seg_size * idx)) for idx in range(num_segments)])
|
| 80 |
+
return frame_indices
|
| 81 |
+
|
| 82 |
+
def get_num_frames_by_duration(duration):
|
| 83 |
+
local_num_frames = 4
|
| 84 |
+
num_segments = int(duration // local_num_frames)
|
| 85 |
+
if num_segments == 0:
|
| 86 |
+
num_frames = local_num_frames
|
| 87 |
+
else:
|
| 88 |
+
num_frames = local_num_frames * num_segments
|
| 89 |
+
|
| 90 |
+
num_frames = min(512, num_frames)
|
| 91 |
+
num_frames = max(128, num_frames)
|
| 92 |
+
|
| 93 |
+
return num_frames
|
| 94 |
+
|
| 95 |
+
def load_video(video_path, bound=None, input_size=448, max_num=1, num_segments=32, get_frame_by_duration = False):
|
| 96 |
+
vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
|
| 97 |
+
max_frame = len(vr) - 1
|
| 98 |
+
fps = float(vr.get_avg_fps())
|
| 99 |
+
|
| 100 |
+
pixel_values_list, num_patches_list = [], []
|
| 101 |
+
transform = build_transform(input_size=input_size)
|
| 102 |
+
if get_frame_by_duration:
|
| 103 |
+
duration = max_frame / fps
|
| 104 |
+
num_segments = get_num_frames_by_duration(duration)
|
| 105 |
+
frame_indices = get_index(bound, fps, max_frame, first_idx=0, num_segments=num_segments)
|
| 106 |
+
for frame_index in frame_indices:
|
| 107 |
+
img = Image.fromarray(vr[frame_index].asnumpy()).convert("RGB")
|
| 108 |
+
img = dynamic_preprocess(img, image_size=input_size, use_thumbnail=True, max_num=max_num)
|
| 109 |
+
pixel_values = [transform(tile) for tile in img]
|
| 110 |
+
pixel_values = torch.stack(pixel_values)
|
| 111 |
+
num_patches_list.append(pixel_values.shape[0])
|
| 112 |
+
pixel_values_list.append(pixel_values)
|
| 113 |
+
pixel_values = torch.cat(pixel_values_list)
|
| 114 |
+
return pixel_values, num_patches_list
|
| 115 |
+
|
| 116 |
+
# evaluation setting
|
| 117 |
+
max_num_frames = 512
|
| 118 |
+
generation_config = dict(
|
| 119 |
+
do_sample=False,
|
| 120 |
+
temperature=0.0,
|
| 121 |
+
max_new_tokens=1024,
|
| 122 |
+
top_p=0.1,
|
| 123 |
+
num_beams=1
|
| 124 |
+
)
|
| 125 |
+
video_path = "your_video.mp4"
|
| 126 |
+
num_segments=128
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
with torch.no_grad():
|
| 130 |
+
|
| 131 |
+
pixel_values, num_patches_list = load_video(video_path, num_segments=num_segments, max_num=1, get_frame_by_duration=False)
|
| 132 |
+
pixel_values = pixel_values.to(torch.bfloat16).to(model.device)
|
| 133 |
+
video_prefix = "".join([f"Frame{i+1}: <image>\n" for i in range(len(num_patches_list))])
|
| 134 |
+
# single-turn conversation
|
| 135 |
+
question1 = "Describe this video in detail."
|
| 136 |
+
question = video_prefix + question1
|
| 137 |
+
output1, chat_history = model.chat(tokenizer, pixel_values, question, generation_config, num_patches_list=num_patches_list, history=None, return_history=True)
|
| 138 |
+
print(output1)
|
| 139 |
+
|
| 140 |
+
# multi-turn conversation
|
| 141 |
+
question2 = "How many people appear in the video?"
|
| 142 |
+
output2, chat_history = model.chat(tokenizer, pixel_values, question, generation_config, num_patches_list=num_patches_list, history=chat_history, return_history=True)
|
| 143 |
+
|
| 144 |
+
print(output2)
|