ynhe commited on
Commit
732976d
·
verified ·
1 Parent(s): c453339

Create demo.py

Browse files
Files changed (1) hide show
  1. demo.py +144 -0
demo.py ADDED
@@ -0,0 +1,144 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import AutoModel, AutoTokenizer
2
+
3
+ # model setting
4
+ model_path = 'OpenGVLab/InternVideo2_5_Chat_8B'
5
+
6
+ tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
7
+ model = AutoModel.from_pretrained(model_path, trust_remote_code=True).half().cuda()
8
+
9
+
10
+ def build_transform(input_size):
11
+ MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
12
+ transform = T.Compose([T.Lambda(lambda img: img.convert("RGB") if img.mode != "RGB" else img), T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), T.ToTensor(), T.Normalize(mean=MEAN, std=STD)])
13
+ return transform
14
+
15
+
16
+ def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
17
+ best_ratio_diff = float("inf")
18
+ best_ratio = (1, 1)
19
+ area = width * height
20
+ for ratio in target_ratios:
21
+ target_aspect_ratio = ratio[0] / ratio[1]
22
+ ratio_diff = abs(aspect_ratio - target_aspect_ratio)
23
+ if ratio_diff < best_ratio_diff:
24
+ best_ratio_diff = ratio_diff
25
+ best_ratio = ratio
26
+ elif ratio_diff == best_ratio_diff:
27
+ if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
28
+ best_ratio = ratio
29
+ return best_ratio
30
+
31
+
32
+ def dynamic_preprocess(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False):
33
+ orig_width, orig_height = image.size
34
+ aspect_ratio = orig_width / orig_height
35
+
36
+ # calculate the existing image aspect ratio
37
+ target_ratios = set((i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if i * j <= max_num and i * j >= min_num)
38
+ target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
39
+
40
+ # find the closest aspect ratio to the target
41
+ target_aspect_ratio = find_closest_aspect_ratio(aspect_ratio, target_ratios, orig_width, orig_height, image_size)
42
+
43
+ # calculate the target width and height
44
+ target_width = image_size * target_aspect_ratio[0]
45
+ target_height = image_size * target_aspect_ratio[1]
46
+ blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
47
+
48
+ # resize the image
49
+ resized_img = image.resize((target_width, target_height))
50
+ processed_images = []
51
+ for i in range(blocks):
52
+ box = ((i % (target_width // image_size)) * image_size, (i // (target_width // image_size)) * image_size, ((i % (target_width // image_size)) + 1) * image_size, ((i // (target_width // image_size)) + 1) * image_size)
53
+ # split the image
54
+ split_img = resized_img.crop(box)
55
+ processed_images.append(split_img)
56
+ assert len(processed_images) == blocks
57
+ if use_thumbnail and len(processed_images) != 1:
58
+ thumbnail_img = image.resize((image_size, image_size))
59
+ processed_images.append(thumbnail_img)
60
+ return processed_images
61
+
62
+
63
+ def load_image(image, input_size=448, max_num=6):
64
+ transform = build_transform(input_size=input_size)
65
+ images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
66
+ pixel_values = [transform(image) for image in images]
67
+ pixel_values = torch.stack(pixel_values)
68
+ return pixel_values
69
+
70
+
71
+ def get_index(bound, fps, max_frame, first_idx=0, num_segments=32):
72
+ if bound:
73
+ start, end = bound[0], bound[1]
74
+ else:
75
+ start, end = -100000, 100000
76
+ start_idx = max(first_idx, round(start * fps))
77
+ end_idx = min(round(end * fps), max_frame)
78
+ seg_size = float(end_idx - start_idx) / num_segments
79
+ frame_indices = np.array([int(start_idx + (seg_size / 2) + np.round(seg_size * idx)) for idx in range(num_segments)])
80
+ return frame_indices
81
+
82
+ def get_num_frames_by_duration(duration):
83
+ local_num_frames = 4
84
+ num_segments = int(duration // local_num_frames)
85
+ if num_segments == 0:
86
+ num_frames = local_num_frames
87
+ else:
88
+ num_frames = local_num_frames * num_segments
89
+
90
+ num_frames = min(512, num_frames)
91
+ num_frames = max(128, num_frames)
92
+
93
+ return num_frames
94
+
95
+ def load_video(video_path, bound=None, input_size=448, max_num=1, num_segments=32, get_frame_by_duration = False):
96
+ vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
97
+ max_frame = len(vr) - 1
98
+ fps = float(vr.get_avg_fps())
99
+
100
+ pixel_values_list, num_patches_list = [], []
101
+ transform = build_transform(input_size=input_size)
102
+ if get_frame_by_duration:
103
+ duration = max_frame / fps
104
+ num_segments = get_num_frames_by_duration(duration)
105
+ frame_indices = get_index(bound, fps, max_frame, first_idx=0, num_segments=num_segments)
106
+ for frame_index in frame_indices:
107
+ img = Image.fromarray(vr[frame_index].asnumpy()).convert("RGB")
108
+ img = dynamic_preprocess(img, image_size=input_size, use_thumbnail=True, max_num=max_num)
109
+ pixel_values = [transform(tile) for tile in img]
110
+ pixel_values = torch.stack(pixel_values)
111
+ num_patches_list.append(pixel_values.shape[0])
112
+ pixel_values_list.append(pixel_values)
113
+ pixel_values = torch.cat(pixel_values_list)
114
+ return pixel_values, num_patches_list
115
+
116
+ # evaluation setting
117
+ max_num_frames = 512
118
+ generation_config = dict(
119
+ do_sample=False,
120
+ temperature=0.0,
121
+ max_new_tokens=1024,
122
+ top_p=0.1,
123
+ num_beams=1
124
+ )
125
+ video_path = "your_video.mp4"
126
+ num_segments=128
127
+
128
+
129
+ with torch.no_grad():
130
+
131
+ pixel_values, num_patches_list = load_video(video_path, num_segments=num_segments, max_num=1, get_frame_by_duration=False)
132
+ pixel_values = pixel_values.to(torch.bfloat16).to(model.device)
133
+ video_prefix = "".join([f"Frame{i+1}: <image>\n" for i in range(len(num_patches_list))])
134
+ # single-turn conversation
135
+ question1 = "Describe this video in detail."
136
+ question = video_prefix + question1
137
+ output1, chat_history = model.chat(tokenizer, pixel_values, question, generation_config, num_patches_list=num_patches_list, history=None, return_history=True)
138
+ print(output1)
139
+
140
+ # multi-turn conversation
141
+ question2 = "How many people appear in the video?"
142
+ output2, chat_history = model.chat(tokenizer, pixel_values, question, generation_config, num_patches_list=num_patches_list, history=chat_history, return_history=True)
143
+
144
+ print(output2)