from .pretrain import * | |
del available_corpus | |
train_file = [ | |
f"{anno_root_downstream}/flickr30k_train.json", | |
f"{data_root}/f30k", | |
"video", | |
] | |
test_file = dict( | |
val=[ | |
f"{anno_root_downstream}/flickr30k_val.json", | |
f"{data_root}/f30k", | |
"video", | |
], | |
test=[ | |
f"{anno_root_downstream}/flickr30k_test.json", | |
f"{data_root}/f30k", | |
"video", | |
], | |
) | |
test_types = ["val"] | |
stop_key = "val/" # used to choose the best ckpt. If None, save the last. | |
is_paragraph_retrieval = False | |
criterion["loss_weight"]["mlm"] = 0.0 | |
scheduler["warmup_epochs"] = 0 | |
optimizer["lr"] = 1e-5 | |
max_txt_l = 32 | |
batch_size = 128 | |
num_frames = 1 | |
num_frames_test = 1 | |
log_freq = 100 | |