from .qa import * | |
train_file = [ | |
[ | |
f"{anno_root_downstream}/anet_qa_train.json", | |
f"{data_root}/activity_net_2fps_360", | |
"video", | |
] | |
] | |
test_file = dict( | |
val=[ | |
f"{anno_root_downstream}/anet_qa_val.json", | |
f"{data_root}/activity_net_2fps_360", | |
"video", | |
], | |
test=[ | |
f"{anno_root_downstream}/anet_qa_test.json", | |
f"{data_root}/activity_net_2fps_360", | |
"video", | |
] | |
) | |
dataset_name = "anet" | |
answer_list = f"{anno_root_downstream}/anet_qa_answer_list.json" # list of answer words | |
test_types = ["val"] | |
stop_key = "val" # used to choose the best ckpt. If None, save the last. | |