Weiyun1025 commited on
Commit
bf60797
·
verified ·
1 Parent(s): 4014eae

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +9 -9
README.md CHANGED
@@ -518,12 +518,12 @@ LMDeploy abstracts the complex inference process of multi-modal Vision-Language
518
  #### A 'Hello, world' Example
519
 
520
  ```python
521
- from lmdeploy import pipeline, TurbomindEngineConfig
522
  from lmdeploy.vl import load_image
523
 
524
  model = 'OpenGVLab/InternVL3-1B'
525
  image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg')
526
- pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=16384, tp=1))
527
  response = pipe(('describe this image', image))
528
  print(response.text)
529
  ```
@@ -535,12 +535,12 @@ If `ImportError` occurs while executing this case, please install the required d
535
  When dealing with multiple images, you can put them all in one list. Keep in mind that multiple images will lead to a higher number of input tokens, and as a result, the size of the context window typically needs to be increased.
536
 
537
  ```python
538
- from lmdeploy import pipeline, TurbomindEngineConfig
539
  from lmdeploy.vl import load_image
540
  from lmdeploy.vl.constants import IMAGE_TOKEN
541
 
542
  model = 'OpenGVLab/InternVL3-1B'
543
- pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=16384, tp=1))
544
 
545
  image_urls=[
546
  'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg',
@@ -558,11 +558,11 @@ print(response.text)
558
  Conducting inference with batch prompts is quite straightforward; just place them within a list structure:
559
 
560
  ```python
561
- from lmdeploy import pipeline, TurbomindEngineConfig
562
  from lmdeploy.vl import load_image
563
 
564
  model = 'OpenGVLab/InternVL3-1B'
565
- pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=16384, tp=1))
566
 
567
  image_urls=[
568
  "https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg",
@@ -578,11 +578,11 @@ print(response)
578
  There are two ways to do the multi-turn conversations with the pipeline. One is to construct messages according to the format of OpenAI and use above introduced method, the other is to use the `pipeline.chat` interface.
579
 
580
  ```python
581
- from lmdeploy import pipeline, TurbomindEngineConfig, GenerationConfig
582
  from lmdeploy.vl import load_image
583
 
584
  model = 'OpenGVLab/InternVL3-1B'
585
- pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=16384, tp=1))
586
 
587
  image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg')
588
  gen_config = GenerationConfig(top_k=40, top_p=0.8, temperature=0.8)
@@ -597,7 +597,7 @@ print(sess.response.text)
597
  LMDeploy's `api_server` enables models to be easily packed into services with a single command. The provided RESTful APIs are compatible with OpenAI's interfaces. Below are an example of service startup:
598
 
599
  ```shell
600
- lmdeploy serve api_server OpenGVLab/InternVL3-1B --server-port 23333 --tp 1
601
  ```
602
 
603
  To use the OpenAI-style interface, you need to install OpenAI:
 
518
  #### A 'Hello, world' Example
519
 
520
  ```python
521
+ from lmdeploy import pipeline, TurbomindEngineConfig, ChatTemplateConfig
522
  from lmdeploy.vl import load_image
523
 
524
  model = 'OpenGVLab/InternVL3-1B'
525
  image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg')
526
+ pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=16384, tp=1), chat_template_config=ChatTemplateConfig(model_name='internvl2_5'))
527
  response = pipe(('describe this image', image))
528
  print(response.text)
529
  ```
 
535
  When dealing with multiple images, you can put them all in one list. Keep in mind that multiple images will lead to a higher number of input tokens, and as a result, the size of the context window typically needs to be increased.
536
 
537
  ```python
538
+ from lmdeploy import pipeline, TurbomindEngineConfig, ChatTemplateConfig
539
  from lmdeploy.vl import load_image
540
  from lmdeploy.vl.constants import IMAGE_TOKEN
541
 
542
  model = 'OpenGVLab/InternVL3-1B'
543
+ pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=16384, tp=1), chat_template_config=ChatTemplateConfig(model_name='internvl2_5'))
544
 
545
  image_urls=[
546
  'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg',
 
558
  Conducting inference with batch prompts is quite straightforward; just place them within a list structure:
559
 
560
  ```python
561
+ from lmdeploy import pipeline, TurbomindEngineConfig, ChatTemplateConfig
562
  from lmdeploy.vl import load_image
563
 
564
  model = 'OpenGVLab/InternVL3-1B'
565
+ pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=16384, tp=1), chat_template_config=ChatTemplateConfig(model_name='internvl2_5'))
566
 
567
  image_urls=[
568
  "https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg",
 
578
  There are two ways to do the multi-turn conversations with the pipeline. One is to construct messages according to the format of OpenAI and use above introduced method, the other is to use the `pipeline.chat` interface.
579
 
580
  ```python
581
+ from lmdeploy import pipeline, TurbomindEngineConfig, GenerationConfig, ChatTemplateConfig
582
  from lmdeploy.vl import load_image
583
 
584
  model = 'OpenGVLab/InternVL3-1B'
585
+ pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=16384, tp=1), chat_template_config=ChatTemplateConfig(model_name='internvl2_5'))
586
 
587
  image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg')
588
  gen_config = GenerationConfig(top_k=40, top_p=0.8, temperature=0.8)
 
597
  LMDeploy's `api_server` enables models to be easily packed into services with a single command. The provided RESTful APIs are compatible with OpenAI's interfaces. Below are an example of service startup:
598
 
599
  ```shell
600
+ lmdeploy serve api_server OpenGVLab/InternVL3-1B --chat-template internvl2_5 --server-port 23333 --tp 1
601
  ```
602
 
603
  To use the OpenAI-style interface, you need to install OpenAI: