Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
|
@@ -518,12 +518,12 @@ LMDeploy abstracts the complex inference process of multi-modal Vision-Language
|
|
| 518 |
#### A 'Hello, world' Example
|
| 519 |
|
| 520 |
```python
|
| 521 |
-
from lmdeploy import pipeline, TurbomindEngineConfig
|
| 522 |
from lmdeploy.vl import load_image
|
| 523 |
|
| 524 |
model = 'OpenGVLab/InternVL3-1B'
|
| 525 |
image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg')
|
| 526 |
-
pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=16384, tp=1))
|
| 527 |
response = pipe(('describe this image', image))
|
| 528 |
print(response.text)
|
| 529 |
```
|
|
@@ -535,12 +535,12 @@ If `ImportError` occurs while executing this case, please install the required d
|
|
| 535 |
When dealing with multiple images, you can put them all in one list. Keep in mind that multiple images will lead to a higher number of input tokens, and as a result, the size of the context window typically needs to be increased.
|
| 536 |
|
| 537 |
```python
|
| 538 |
-
from lmdeploy import pipeline, TurbomindEngineConfig
|
| 539 |
from lmdeploy.vl import load_image
|
| 540 |
from lmdeploy.vl.constants import IMAGE_TOKEN
|
| 541 |
|
| 542 |
model = 'OpenGVLab/InternVL3-1B'
|
| 543 |
-
pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=16384, tp=1))
|
| 544 |
|
| 545 |
image_urls=[
|
| 546 |
'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg',
|
|
@@ -558,11 +558,11 @@ print(response.text)
|
|
| 558 |
Conducting inference with batch prompts is quite straightforward; just place them within a list structure:
|
| 559 |
|
| 560 |
```python
|
| 561 |
-
from lmdeploy import pipeline, TurbomindEngineConfig
|
| 562 |
from lmdeploy.vl import load_image
|
| 563 |
|
| 564 |
model = 'OpenGVLab/InternVL3-1B'
|
| 565 |
-
pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=16384, tp=1))
|
| 566 |
|
| 567 |
image_urls=[
|
| 568 |
"https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg",
|
|
@@ -578,11 +578,11 @@ print(response)
|
|
| 578 |
There are two ways to do the multi-turn conversations with the pipeline. One is to construct messages according to the format of OpenAI and use above introduced method, the other is to use the `pipeline.chat` interface.
|
| 579 |
|
| 580 |
```python
|
| 581 |
-
from lmdeploy import pipeline, TurbomindEngineConfig, GenerationConfig
|
| 582 |
from lmdeploy.vl import load_image
|
| 583 |
|
| 584 |
model = 'OpenGVLab/InternVL3-1B'
|
| 585 |
-
pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=16384, tp=1))
|
| 586 |
|
| 587 |
image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg')
|
| 588 |
gen_config = GenerationConfig(top_k=40, top_p=0.8, temperature=0.8)
|
|
@@ -597,7 +597,7 @@ print(sess.response.text)
|
|
| 597 |
LMDeploy's `api_server` enables models to be easily packed into services with a single command. The provided RESTful APIs are compatible with OpenAI's interfaces. Below are an example of service startup:
|
| 598 |
|
| 599 |
```shell
|
| 600 |
-
lmdeploy serve api_server OpenGVLab/InternVL3-1B --server-port 23333 --tp 1
|
| 601 |
```
|
| 602 |
|
| 603 |
To use the OpenAI-style interface, you need to install OpenAI:
|
|
|
|
| 518 |
#### A 'Hello, world' Example
|
| 519 |
|
| 520 |
```python
|
| 521 |
+
from lmdeploy import pipeline, TurbomindEngineConfig, ChatTemplateConfig
|
| 522 |
from lmdeploy.vl import load_image
|
| 523 |
|
| 524 |
model = 'OpenGVLab/InternVL3-1B'
|
| 525 |
image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg')
|
| 526 |
+
pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=16384, tp=1), chat_template_config=ChatTemplateConfig(model_name='internvl2_5'))
|
| 527 |
response = pipe(('describe this image', image))
|
| 528 |
print(response.text)
|
| 529 |
```
|
|
|
|
| 535 |
When dealing with multiple images, you can put them all in one list. Keep in mind that multiple images will lead to a higher number of input tokens, and as a result, the size of the context window typically needs to be increased.
|
| 536 |
|
| 537 |
```python
|
| 538 |
+
from lmdeploy import pipeline, TurbomindEngineConfig, ChatTemplateConfig
|
| 539 |
from lmdeploy.vl import load_image
|
| 540 |
from lmdeploy.vl.constants import IMAGE_TOKEN
|
| 541 |
|
| 542 |
model = 'OpenGVLab/InternVL3-1B'
|
| 543 |
+
pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=16384, tp=1), chat_template_config=ChatTemplateConfig(model_name='internvl2_5'))
|
| 544 |
|
| 545 |
image_urls=[
|
| 546 |
'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg',
|
|
|
|
| 558 |
Conducting inference with batch prompts is quite straightforward; just place them within a list structure:
|
| 559 |
|
| 560 |
```python
|
| 561 |
+
from lmdeploy import pipeline, TurbomindEngineConfig, ChatTemplateConfig
|
| 562 |
from lmdeploy.vl import load_image
|
| 563 |
|
| 564 |
model = 'OpenGVLab/InternVL3-1B'
|
| 565 |
+
pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=16384, tp=1), chat_template_config=ChatTemplateConfig(model_name='internvl2_5'))
|
| 566 |
|
| 567 |
image_urls=[
|
| 568 |
"https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg",
|
|
|
|
| 578 |
There are two ways to do the multi-turn conversations with the pipeline. One is to construct messages according to the format of OpenAI and use above introduced method, the other is to use the `pipeline.chat` interface.
|
| 579 |
|
| 580 |
```python
|
| 581 |
+
from lmdeploy import pipeline, TurbomindEngineConfig, GenerationConfig, ChatTemplateConfig
|
| 582 |
from lmdeploy.vl import load_image
|
| 583 |
|
| 584 |
model = 'OpenGVLab/InternVL3-1B'
|
| 585 |
+
pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=16384, tp=1), chat_template_config=ChatTemplateConfig(model_name='internvl2_5'))
|
| 586 |
|
| 587 |
image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg')
|
| 588 |
gen_config = GenerationConfig(top_k=40, top_p=0.8, temperature=0.8)
|
|
|
|
| 597 |
LMDeploy's `api_server` enables models to be easily packed into services with a single command. The provided RESTful APIs are compatible with OpenAI's interfaces. Below are an example of service startup:
|
| 598 |
|
| 599 |
```shell
|
| 600 |
+
lmdeploy serve api_server OpenGVLab/InternVL3-1B --chat-template internvl2_5 --server-port 23333 --tp 1
|
| 601 |
```
|
| 602 |
|
| 603 |
To use the OpenAI-style interface, you need to install OpenAI:
|