czczup commited on
Commit
cabca04
·
verified ·
1 Parent(s): a1968b7

Delete mmmu-val.log

Browse files
Files changed (1) hide show
  1. mmmu-val.log +0 -1143
mmmu-val.log DELETED
@@ -1,1143 +0,0 @@
1
- + CHECKPOINT=work_dirs/InternVL2-2B
2
- + DATASET=mmmu-val
3
- ++ pwd
4
- + CHECKPOINT=/mnt/petrelfs/wangweiyun/workspace_zyc/VLM-Dev/work_dirs/InternVL2-2B
5
- ++ pwd
6
- + export PYTHONPATH=/mnt/petrelfs/wangweiyun/workspace_zyc/VLM-Dev:/mnt/petrelfs/wangweiyun/workspace_wwy/pkgs/petrel-oss-sdk-2.3.14:/mnt/petrelfs/share_data/wangweiyun/share_pkgs/petrel-oss-sdk-2.3.12:
7
- + PYTHONPATH=/mnt/petrelfs/wangweiyun/workspace_zyc/VLM-Dev:/mnt/petrelfs/wangweiyun/workspace_wwy/pkgs/petrel-oss-sdk-2.3.14:/mnt/petrelfs/share_data/wangweiyun/share_pkgs/petrel-oss-sdk-2.3.12:
8
- + echo 'CHECKPOINT: /mnt/petrelfs/wangweiyun/workspace_zyc/VLM-Dev/work_dirs/InternVL2-2B'
9
- CHECKPOINT: /mnt/petrelfs/wangweiyun/workspace_zyc/VLM-Dev/work_dirs/InternVL2-2B
10
- + MASTER_PORT=63669
11
- + PORT=63665
12
- + GPUS=8
13
- + GPUS_PER_NODE=8
14
- + NODES=1
15
- + export MASTER_PORT=63669
16
- + MASTER_PORT=63669
17
- + export PORT=63665
18
- + PORT=63665
19
- + ARGS=("$@")
20
- + [[ 5 -gt 0 ]]
21
- + case "$1" in
22
- + shift
23
- + [[ 4 -gt 0 ]]
24
- + case "$1" in
25
- + shift
26
- + [[ 3 -gt 0 ]]
27
- + case "$1" in
28
- + shift
29
- + [[ 2 -gt 0 ]]
30
- + case "$1" in
31
- + shift
32
- + [[ 1 -gt 0 ]]
33
- + case "$1" in
34
- + shift
35
- + [[ 0 -gt 0 ]]
36
- GPUS: 8
37
- + echo 'GPUS: 8'
38
- + [[ /mnt/petrelfs/wangweiyun/workspace_zyc/VLM-Dev/work_dirs/InternVL2-2B == */ ]]
39
- + '[' mmmu-val == mme ']'
40
- + '[' mmmu-val == caption ']'
41
- + '[' mmmu-val == caption-coco ']'
42
- + '[' mmmu-val == caption-flickr30k ']'
43
- + '[' mmmu-val == caption-nocaps ']'
44
- + '[' mmmu-val == vqa ']'
45
- + '[' mmmu-val == vqa-okvqa-val ']'
46
- + '[' mmmu-val == vqa-textvqa-val ']'
47
- + '[' mmmu-val == vqa-textvqa-val-ocr ']'
48
- + '[' mmmu-val == vqa-vizwiz-val ']'
49
- + '[' mmmu-val == vqa-vizwiz-test ']'
50
- + '[' mmmu-val == vqa-vqav2-testdev ']'
51
- + '[' mmmu-val == vqa-ai2d-test ']'
52
- + '[' mmmu-val == vqa-vqav2-val ']'
53
- + '[' mmmu-val == vqa-gqa-testdev ']'
54
- + '[' mmmu-val == vqa-docvqa-val ']'
55
- + '[' mmmu-val == vqa-docvqa-test ']'
56
- + '[' mmmu-val == vqa-chartqa-test ']'
57
- + '[' mmmu-val == vqa-infovqa-val ']'
58
- + '[' mmmu-val == vqa-infovqa-test ']'
59
- + '[' mmmu-val == vqa-chartqa-test-human ']'
60
- + '[' mmmu-val == vqa-chartqa-test-augmented ']'
61
- + '[' mmmu-val == vqa-ocrvqa-val ']'
62
- + '[' mmmu-val == vqa-ocrvqa-test ']'
63
- + '[' mmmu-val == refcoco ']'
64
- + '[' mmmu-val == refcoco-val ']'
65
- + '[' mmmu-val == llava-bench ']'
66
- + '[' mmmu-val == pope ']'
67
- + '[' mmmu-val == tiny_lvlm ']'
68
- + '[' mmmu-val == mmvet ']'
69
- + '[' mmmu-val == cmmmu ']'
70
- + '[' mmmu-val == mmbench-dev-en ']'
71
- + '[' mmmu-val == mmbench-dev-cn ']'
72
- + '[' mmmu-val == mmbench-test-en ']'
73
- + '[' mmmu-val == mmbench-test-cn ']'
74
- + '[' mmmu-val == ccbench-dev ']'
75
- + '[' mmmu-val == scienceqa ']'
76
- + '[' mmmu-val == mmmu-dev ']'
77
- + '[' mmmu-val == mmmu-val ']'
78
- + torchrun --nnodes=1 --node_rank=0 --master_addr=127.0.0.1 --nproc_per_node=8 --master_port=63669 eval/mmmu/evaluate_mmmu.py --checkpoint /mnt/petrelfs/wangweiyun/workspace_zyc/VLM-Dev/work_dirs/InternVL2-2B --datasets MMMU_validation --dynamic --max-num 6
79
- [2024-08-07 21:56:26,513] torch.distributed.run: [WARNING]
80
- [2024-08-07 21:56:26,513] torch.distributed.run: [WARNING] *****************************************
81
- [2024-08-07 21:56:26,513] torch.distributed.run: [WARNING] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
82
- [2024-08-07 21:56:26,513] torch.distributed.run: [WARNING] *****************************************
83
- datasets: ['MMMU_validation']
84
- datasets: ['MMMU_validation']
85
- datasets: ['MMMU_validation']
86
- datasets: ['MMMU_validation']
87
- datasets: ['MMMU_validation']
88
- datasets: ['MMMU_validation']
89
- datasets: ['MMMU_validation']
90
- datasets: ['MMMU_validation']
91
- Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
92
- Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
93
- Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
94
- Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
95
- Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
96
- Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
97
- Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
98
- Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
99
- [test] total_params: 2.205754368B, use num_beams: 1
100
- [test] image_size: 448
101
- [test] template: internlm2-chat
102
- [test] dynamic_image_size: True
103
- [test] use_thumbnail: True
104
- [test] max_num: 6
105
- [test] total_params: 2.205754368B, use num_beams: 1
106
- [test] image_size: 448
107
- [test] template: internlm2-chat
108
- [test] dynamic_image_size: True
109
- [test] use_thumbnail: True
110
- [test] max_num: 6
111
- [test] total_params: 2.205754368B, use num_beams: 1
112
- [test] image_size: 448
113
- [test] template: internlm2-chat
114
- [test] dynamic_image_size: True[test] total_params: 2.205754368B, use num_beams: 1
115
- [test] use_thumbnail: True
116
-
117
- [test] max_num: 6[test] image_size: 448
118
-
119
- [test] template: internlm2-chat
120
- [test] dynamic_image_size: True
121
- [test] use_thumbnail: True
122
- [test] max_num: 6
123
- [test] total_params: 2.205754368B, use num_beams: 1
124
- [test] image_size: 448
125
- [test] template: internlm2-chat
126
- [test] dynamic_image_size: True
127
- [test] use_thumbnail: True
128
- [test] max_num: 6
129
- [test] total_params: 2.205754368B, use num_beams: 1
130
- [test] image_size: 448
131
- [test] total_params: 2.205754368B, use num_beams: 1
132
- [test] image_size: 448
133
- [test] template: internlm2-chat
134
- [test] template: internlm2-chat
135
- [test] dynamic_image_size: True
136
- [test] use_thumbnail: True
137
- [test] max_num: 6
138
- [test] dynamic_image_size: True
139
- [test] use_thumbnail: True
140
- [test] max_num: 6
141
- [test] total_params: 2.205754368B, use num_beams: 1
142
- [test] image_size: 448
143
- [test] template: internlm2-chat
144
- [test] dynamic_image_size: True
145
- [test] use_thumbnail: True
146
- [test] max_num: 6
147
-
148
- 0%| | 0/30 [00:00<?, ?it/s]
149
- 0%| | 0/30 [00:00<?, ?it/s]
150
- 0%| | 0/30 [00:00<?, ?it/s]
151
- 0%| | 0/30 [00:00<?, ?it/s]
152
- 0%| | 0/30 [00:00<?, ?it/s]
153
- 0%| | 0/30 [00:00<?, ?it/s]
154
- 0%| | 0/30 [00:00<?, ?it/s]
155
- 0%| | 0/30 [00:00<?, ?it/s]
156
- 3%|▎ | 1/30 [00:21<10:22, 21.48s/it]
157
- 3%|▎ | 1/30 [00:21<10:22, 21.47s/it]
158
- 3%|▎ | 1/30 [00:21<10:25, 21.56s/it]
159
- 3%|▎ | 1/30 [00:21<10:27, 21.62s/it]
160
- 3%|▎ | 1/30 [00:21<10:33, 21.84s/it]
161
- 3%|▎ | 1/30 [00:22<10:55, 22.62s/it]
162
- 3%|▎ | 1/30 [00:22<10:55, 22.60s/it]
163
- 3%|▎ | 1/30 [00:25<12:14, 25.34s/it]
164
- 7%|▋ | 2/30 [00:36<08:19, 17.82s/it]
165
- 7%|▋ | 2/30 [00:37<08:33, 18.35s/it]
166
- 7%|▋ | 2/30 [00:39<09:02, 19.39s/it]
167
- 7%|▋ | 2/30 [00:40<09:14, 19.79s/it]
168
- 7%|▋ | 2/30 [00:40<09:19, 19.98s/it]
169
- 7%|▋ | 2/30 [00:40<09:15, 19.84s/it]
170
- 7%|▋ | 2/30 [00:41<09:16, 19.87s/it]
171
- 7%|▋ | 2/30 [00:41<09:40, 20.74s/it]
172
- 10%|█ | 3/30 [00:51<07:28, 16.59s/it]
173
- 10%|█ | 3/30 [00:54<07:56, 17.64s/it]
174
- 10%|█ | 3/30 [00:56<08:07, 18.07s/it]
175
- 10%|█ | 3/30 [00:57<08:28, 18.82s/it]
176
- 10%|█ | 3/30 [00:57<08:12, 18.23s/it]
177
- 10%|█ | 3/30 [00:57<08:26, 18.75s/it]
178
- 10%|█ | 3/30 [00:59<08:43, 19.37s/it]
179
- 10%|█ | 3/30 [01:00<08:55, 19.82s/it]
180
- 13%|█▎ | 4/30 [01:09<07:25, 17.12s/it]
181
- 13%|█▎ | 4/30 [01:10<07:25, 17.14s/it]
182
- 13%|█▎ | 4/30 [01:11<07:09, 16.51s/it]
183
- 13%|█▎ | 4/30 [01:12<07:29, 17.29s/it]
184
- 13%|█▎ | 4/30 [01:12<07:32, 17.40s/it]
185
- 13%|█▎ | 4/30 [01:16<08:04, 18.63s/it]
186
- 13%|█▎ | 4/30 [01:18<08:29, 19.60s/it]
187
- 13%|█▎ | 4/30 [01:19<08:30, 19.62s/it]
188
- 17%|█▋ | 5/30 [01:27<07:05, 17.04s/it]
189
- 17%|█▋ | 5/30 [01:28<06:58, 16.73s/it]
190
- 17%|█▋ | 5/30 [01:29<07:31, 18.05s/it]
191
- 17%|█▋ | 5/30 [01:30<07:20, 17.61s/it]
192
- 17%|█▋ | 5/30 [01:33<07:28, 17.96s/it]
193
- 17%|█▋ | 5/30 [01:35<08:04, 19.38s/it]
194
- 17%|█▋ | 5/30 [01:37<08:05, 19.40s/it]
195
- 17%|█▋ | 5/30 [01:38<08:04, 19.39s/it]
196
- 20%|██ | 6/30 [01:45<06:43, 16.81s/it]
197
- 20%|██ | 6/30 [01:46<07:03, 17.64s/it]
198
- 20%|██ | 6/30 [01:48<07:21, 18.38s/it]
199
- 20%|██ | 6/30 [01:49<07:13, 18.07s/it]
200
- 20%|██ | 6/30 [01:51<07:08, 17.87s/it]
201
- 20%|██ | 6/30 [01:51<07:16, 18.21s/it]
202
- 20%|██ | 6/30 [01:56<07:41, 19.22s/it]
203
- 20%|██ | 6/30 [01:56<07:35, 18.99s/it]
204
- 23%|██▎ | 7/30 [02:01<06:26, 16.79s/it]
205
- 23%|██▎ | 7/30 [02:03<06:38, 17.32s/it]
206
- 23%|██▎ | 7/30 [02:05<06:51, 17.89s/it]
207
- 23%|██▎ | 7/30 [02:08<07:02, 18.36s/it]
208
- 23%|██▎ | 7/30 [02:10<07:02, 18.36s/it]
209
- 23%|██▎ | 7/30 [02:11<07:12, 18.79s/it]
210
- 23%|██▎ | 7/30 [02:13<07:01, 18.31s/it]
211
- 23%|██▎ | 7/30 [02:14<07:12, 18.83s/it]
212
- 27%|██▋ | 8/30 [02:19<06:21, 17.36s/it]
213
- 27%|██▋ | 8/30 [02:22<06:30, 17.76s/it]
214
- 27%|██▋ | 8/30 [02:23<06:32, 17.83s/it]
215
- 27%|██▋ | 8/30 [02:26<06:42, 18.30s/it]
216
- 27%|██▋ | 8/30 [02:28<06:41, 18.26s/it]
217
- 27%|██▋ | 8/30 [02:29<06:25, 17.50s/it]
218
- 27%|██▋ | 8/30 [02:29<06:49, 18.61s/it]
219
- 27%|██▋ | 8/30 [02:30<06:34, 17.92s/it]
220
- 30%|███ | 9/30 [02:35<05:52, 16.80s/it]
221
- 30%|███ | 9/30 [02:37<05:56, 17.00s/it]
222
- 30%|███ | 9/30 [02:38<05:56, 16.96s/it]
223
- 30%|███ | 9/30 [02:39<05:46, 16.50s/it]
224
- 30%|███ | 9/30 [02:42<05:53, 16.85s/it]
225
- 30%|███ | 9/30 [02:43<06:00, 17.18s/it]
226
- 30%|███ | 9/30 [02:46<06:05, 17.42s/it]
227
- 30%|███ | 9/30 [02:48<06:15, 17.87s/it]
228
- 33%|███▎ | 10/30 [02:49<05:19, 15.98s/it]
229
- 33%|███▎ | 10/30 [02:52<05:26, 16.31s/it]
230
- 33%|███▎ | 10/30 [02:58<06:00, 18.01s/it]
231
- 33%|███▎ | 10/30 [02:59<05:51, 17.58s/it]
232
- 33%|███▎ | 10/30 [02:59<05:38, 16.94s/it]
233
- 33%|███▎ | 10/30 [03:00<05:42, 17.11s/it]
234
- 33%|███▎ | 10/30 [03:03<05:45, 17.28s/it]
235
- 33%|███▎ | 10/30 [03:05<05:53, 17.68s/it]
236
- 37%|███▋ | 11/30 [03:06<05:09, 16.31s/it]
237
- 37%|███▋ | 11/30 [03:07<05:03, 15.99s/it]
238
- 37%|███▋ | 11/30 [03:12<05:15, 16.62s/it]
239
- 37%|███▋ | 11/30 [03:12<05:00, 15.83s/it]
240
- 37%|███▋ | 11/30 [03:13<04:58, 15.74s/it]
241
- 37%|███▋ | 11/30 [03:13<05:15, 16.62s/it]
242
- 37%|███▋ | 11/30 [03:16<05:03, 15.96s/it]
243
- 37%|███▋ | 11/30 [03:17<05:03, 15.96s/it]
244
- 40%|████ | 12/30 [03:22<04:40, 15.59s/it]
245
- 40%|████ | 12/30 [03:24<05:02, 16.80s/it]
246
- 40%|████ | 12/30 [03:28<04:56, 16.48s/it]
247
- 40%|████ | 12/30 [03:28<04:50, 16.12s/it]
248
- 40%|████ | 12/30 [03:29<04:46, 15.93s/it]
249
- 40%|████ | 12/30 [03:32<05:05, 17.00s/it]
250
- 40%|████ | 12/30 [03:33<04:46, 15.92s/it]
251
- 40%|████ | 12/30 [03:38<05:19, 17.75s/it]
252
- 43%|████▎ | 13/30 [03:38<04:28, 15.81s/it]
253
- 43%|████▎ | 13/30 [03:39<04:37, 16.32s/it]
254
- 43%|████▎ | 13/30 [03:42<04:22, 15.45s/it]
255
- 43%|████▎ | 13/30 [03:44<04:37, 16.31s/it]
256
- 43%|████▎ | 13/30 [03:46<04:34, 16.12s/it]
257
- 43%|████▎ | 13/30 [03:47<04:37, 16.33s/it]
258
- 43%|████▎ | 13/30 [03:51<04:43, 16.66s/it]
259
- 47%|████▋ | 14/30 [03:53<04:08, 15.50s/it]
260
- 43%|████▎ | 13/30 [03:55<04:59, 17.61s/it]
261
- 47%|████▋ | 14/30 [03:56<04:22, 16.40s/it]
262
- 47%|████▋ | 14/30 [03:57<04:04, 15.30s/it]
263
- 47%|████▋ | 14/30 [03:58<04:09, 15.58s/it]
264
- 47%|████▋ | 14/30 [04:03<04:19, 16.25s/it]
265
- 47%|████▋ | 14/30 [04:03<04:23, 16.46s/it]
266
- 50%|█████ | 15/30 [04:06<03:42, 14.82s/it]
267
- 47%|████▋ | 14/30 [04:08<04:27, 16.72s/it]
268
- 50%|█████ | 15/30 [04:12<04:03, 16.26s/it]
269
- 47%|████▋ | 14/30 [04:13<04:42, 17.64s/it]
270
- 50%|█████ | 15/30 [04:16<04:06, 16.43s/it]
271
- 50%|█████ | 15/30 [04:18<04:14, 16.96s/it]
272
- 50%|█████ | 15/30 [04:20<04:09, 16.66s/it]
273
- 53%|█████▎ | 16/30 [04:22<03:30, 15.06s/it]
274
- 50%|█████ | 15/30 [04:23<04:22, 17.48s/it]
275
- 50%|█████ | 15/30 [04:27<04:20, 17.37s/it]
276
- 50%|█████ | 15/30 [04:31<04:25, 17.72s/it]
277
- 53%|█████▎ | 16/30 [04:31<04:01, 17.27s/it]
278
- 53%|█████▎ | 16/30 [04:34<03:53, 16.65s/it]
279
- 53%|█████▎ | 16/30 [04:39<04:02, 17.29s/it]
280
- 53%|█████▎ | 16/30 [04:39<03:58, 17.03s/it]
281
- 53%|█████▎ | 16/30 [04:39<04:18, 18.44s/it]
282
- 57%|█████▋ | 17/30 [04:42<03:34, 16.53s/it]
283
- 53%|█████▎ | 16/30 [04:43<03:56, 16.90s/it]
284
- 53%|█████▎ | 16/30 [04:44<03:49, 16.36s/it]
285
- 57%|█████▋ | 17/30 [04:47<03:38, 16.81s/it]
286
- 57%|█████▋ | 17/30 [04:48<03:27, 15.98s/it]
287
- 57%|█████▋ | 17/30 [04:52<03:38, 16.79s/it]
288
- 57%|█████▋ | 17/30 [04:53<03:32, 16.34s/it]
289
- 57%|█████▋ | 17/30 [04:53<03:29, 16.10s/it]
290
- 60%|██████ | 18/30 [04:57<03:12, 16.06s/it]
291
- 57%|█████▋ | 17/30 [04:58<03:34, 16.47s/it]
292
- 60%|██████ | 18/30 [05:00<03:08, 15.70s/it]
293
- 60%|██████ | 18/30 [05:02<03:04, 15.37s/it]
294
- 57%|█████▋ | 17/30 [05:06<03:54, 18.01s/it]
295
- 60%|██████ | 18/30 [05:06<03:11, 15.92s/it]
296
- 60%|██████ | 18/30 [05:08<03:11, 15.94s/it]
297
- 60%|██████ | 18/30 [05:12<03:23, 16.97s/it]
298
- 63%|██████▎ | 19/30 [05:15<03:03, 16.71s/it]
299
- 63%|██████▎ | 19/30 [05:18<02:59, 16.33s/it]
300
- 60%|██████ | 18/30 [05:20<03:36, 18.07s/it]
301
- 63%|██████▎ | 19/30 [05:24<02:55, 15.99s/it]
302
- 63%|██████▎ | 19/30 [05:25<03:04, 16.80s/it]
303
- 63%|██████▎ | 19/30 [05:25<03:13, 17.60s/it]
304
- 60%|██████ | 18/30 [05:28<03:50, 19.22s/it]
305
- 63%|██████▎ | 19/30 [05:29<03:07, 17.02s/it]
306
- 67%|██████▋ | 20/30 [05:30<02:41, 16.20s/it]
307
- 67%|██████▋ | 20/30 [05:37<02:51, 17.16s/it]
308
- 63%|██████▎ | 19/30 [05:38<03:18, 18.07s/it]
309
- 67%|██████▋ | 20/30 [05:41<02:43, 16.33s/it]
310
- 67%|██████▋ | 20/30 [05:42<02:55, 17.54s/it]
311
- 67%|██████▋ | 20/30 [05:43<02:52, 17.21s/it]
312
- 63%|██████▎ | 19/30 [05:43<03:18, 18.05s/it]
313
- 67%|██████▋ | 20/30 [05:45<02:46, 16.68s/it]
314
- 70%|███████ | 21/30 [05:46<02:24, 16.10s/it]
315
- 70%|███████ | 21/30 [05:50<02:23, 15.89s/it]
316
- 67%|██████▋ | 20/30 [05:57<03:03, 18.34s/it]
317
- 70%|███████ | 21/30 [05:58<02:33, 17.07s/it]
318
- 70%|███████ | 21/30 [05:59<02:30, 16.68s/it]
319
- 67%|██████▋ | 20/30 [06:00<02:56, 17.69s/it]
320
- 70%|███████ | 21/30 [06:00<02:34, 17.15s/it]
321
- 70%|███████ | 21/30 [06:04<02:35, 17.27s/it]
322
- 73%|███████▎ | 22/30 [06:08<02:23, 17.98s/it]
323
- 73%|███████▎ | 22/30 [06:12<02:22, 17.76s/it]
324
- 73%|███████▎ | 22/30 [06:15<02:15, 16.89s/it]
325
- 70%|███████ | 21/30 [06:16<02:45, 18.35s/it]
326
- 73%|███████▎ | 22/30 [06:16<02:14, 16.81s/it]
327
- 73%|███████▎ | 22/30 [06:19<02:12, 16.59s/it]
328
- 70%|███████ | 21/30 [06:20<02:45, 18.44s/it]
329
- 73%|███████▎ | 22/30 [06:23<02:30, 18.85s/it]
330
- 77%|███████▋ | 23/30 [06:26<02:05, 17.93s/it]
331
- 77%|███████▋ | 23/30 [06:32<02:08, 18.34s/it]
332
- 77%|███████▋ | 23/30 [06:32<01:59, 17.00s/it]
333
- 73%|███████▎ | 22/30 [06:36<02:32, 19.07s/it]
334
- 77%|███████▋ | 23/30 [06:36<02:05, 17.88s/it]
335
- 77%|███████▋ | 23/30 [06:37<01:59, 17.09s/it]
336
- 73%|███████▎ | 22/30 [06:38<02:26, 18.28s/it]
337
- 77%|███████▋ | 23/30 [06:43<02:15, 19.31s/it]
338
- 80%|████████ | 24/30 [06:45<01:49, 18.17s/it]
339
- 80%|████████ | 24/30 [06:48<01:46, 17.68s/it]
340
- 77%|███████▋ | 23/30 [06:48<01:58, 16.95s/it]
341
- 80%|████████ | 24/30 [06:48<01:36, 16.12s/it]
342
- 80%|████████ | 24/30 [06:49<01:41, 16.98s/it]
343
- 77%|███████▋ | 23/30 [06:52<01:58, 16.88s/it]
344
- 80%|████████ | 24/30 [06:52<01:39, 16.52s/it]
345
- 80%|████████ | 24/30 [06:56<01:44, 17.36s/it]
346
- 83%|████████▎ | 25/30 [07:00<01:25, 17.10s/it]
347
- 83%|████████▎ | 25/30 [07:02<01:22, 16.54s/it]
348
- 80%|████████ | 24/30 [07:03<01:38, 16.36s/it]
349
- 83%|████████▎ | 25/30 [07:07<01:26, 17.23s/it]
350
- 83%|████████▎ | 25/30 [07:08<01:25, 17.15s/it]
351
- 80%|████████ | 24/30 [07:09<01:41, 16.94s/it]
352
- 83%|████████▎ | 25/30 [07:10<01:24, 16.92s/it]
353
- 83%|████████▎ | 25/30 [07:20<01:36, 19.27s/it]
354
- 87%|████████▋ | 26/30 [07:20<01:12, 18.12s/it]
355
- 87%|████████▋ | 26/30 [07:25<01:14, 18.54s/it]
356
- 87%|████████▋ | 26/30 [07:33<01:18, 19.56s/it]
357
- 83%|████████▎ | 25/30 [07:34<01:43, 20.71s/it]
358
- 87%|████████▋ | 26/30 [07:34<01:21, 20.28s/it]
359
- 87%|████████▋ | 26/30 [07:44<01:28, 22.05s/it]
360
- 83%|████████▎ | 25/30 [07:46<01:55, 23.01s/it]
361
- 90%|█████████ | 27/30 [07:51<01:02, 20.81s/it]
362
- 87%|████████▋ | 26/30 [08:01<01:30, 22.54s/it]
363
- 87%|████████▋ | 26/30 [08:02<01:44, 26.10s/it]
364
- 90%|█████████ | 27/30 [08:02<01:07, 22.43s/it]
365
- 90%|█████████ | 27/30 [08:04<01:09, 23.12s/it]
366
- 87%|████████▋ | 26/30 [08:10<01:32, 23.24s/it]
367
- 90%|█████████ | 27/30 [08:11<01:24, 28.08s/it]
368
- 90%|█████████ | 27/30 [08:17<01:15, 25.25s/it]
369
- 93%|█████████▎| 28/30 [08:23<00:48, 24.12s/it]
370
- 90%|█████████ | 27/30 [08:23<01:07, 22.46s/it]
371
- 93%|█████████▎| 28/30 [08:23<00:44, 22.03s/it]
372
- 90%|█████████ | 27/30 [08:24<01:14, 24.89s/it]
373
- 93%|█████████▎| 28/30 [08:40<00:49, 24.60s/it]
374
- 93%|█████████▎| 28/30 [08:40<00:56, 28.31s/it]
375
- 93%|█████████▎| 28/30 [08:40<00:54, 27.04s/it]
376
- 90%|█████████ | 27/30 [08:40<01:16, 25.38s/it]
377
- 93%|█████████▎| 28/30 [08:44<00:46, 23.47s/it]
378
- 97%|█████████▋| 29/30 [08:47<00:24, 24.15s/it]
379
- 93%|█████████▎| 28/30 [08:50<00:47, 23.73s/it]
380
- 97%|█████████▋| 29/30 [09:03<00:27, 27.39s/it]
381
- 97%|█████████▋| 29/30 [09:04<00:24, 24.49s/it]
382
- 97%|█████████▋| 29/30 [09:05<00:26, 26.41s/it]
383
- 93%|█████████▎| 28/30 [09:06<00:51, 25.57s/it]
384
- 97%|█████████▋| 29/30 [09:08<00:28, 28.13s/it]
385
- 97%|█████████▋| 29/30 [09:17<00:26, 26.37s/it]
386
- 97%|█████████▋| 29/30 [09:20<00:25, 25.61s/it]
387
- 100%|██████████| 30/30 [09:20<00:00, 26.81s/it]
388
- 100%|██████████| 30/30 [09:20<00:00, 18.70s/it]
389
-
390
- 0it [00:00, ?it/s]/mnt/petrelfs/wangweiyun/miniconda3/envs/internvl/lib/python3.10/site-packages/transformers/generation/configuration_utils.py:392: UserWarning: `do_sample` is set to `False`. However, `temperature` is set to `0.0` -- this flag is only used in sample-based generation modes. You should set `do_sample=True` or unset `temperature`.
391
- warnings.warn(
392
-
393
- 1it [00:00, 1.51it/s]
394
- 2it [00:00, 2.38it/s]
395
- 4it [00:01, 4.78it/s]
396
- 6it [00:01, 6.64it/s]
397
- 7it [00:01, 6.84it/s]
398
- 8it [00:01, 6.75it/s]
399
- 10it [00:01, 8.42it/s]
400
- 11it [00:01, 8.61it/s]
401
- 12it [00:01, 8.43it/s]
402
- 14it [00:02, 9.72it/s]
403
- 15it [00:02, 9.75it/s]
404
- 16it [00:02, 9.54it/s]
405
- 18it [00:02, 9.50it/s]
406
- 19it [00:02, 9.08it/s]
407
- 21it [00:02, 9.21it/s]
408
- 23it [00:03, 8.62it/s]
409
- 24it [00:03, 8.83it/s]
410
- 26it [00:03, 9.46it/s]
411
- 28it [00:03, 9.25it/s]
412
- 29it [00:03, 8.96it/s]
413
- 30it [00:03, 8.72it/s]
414
- 32it [00:04, 9.19it/s]
415
- 33it [00:04, 8.63it/s]
416
- 34it [00:04, 8.04it/s]
417
- 35it [00:04, 8.02it/s]
418
- 36it [00:04, 7.73it/s]
419
- 37it [00:04, 8.24it/s]
420
- 38it [00:04, 7.98it/s]
421
- 39it [00:05, 7.05it/s]
422
- 41it [00:05, 8.16it/s]
423
- 43it [00:05, 7.37it/s]
424
- 44it [00:05, 6.48it/s]
425
- 45it [00:05, 6.60it/s]
426
- 46it [00:06, 6.88it/s]
427
- 48it [00:06, 8.45it/s]
428
- 49it [00:06, 8.26it/s]
429
- 50it [00:06, 8.16it/s]
430
- 52it [00:06, 7.88it/s]
431
- 100%|██████████| 30/30 [09:27<00:00, 24.03s/it]
432
- 100%|██████████| 30/30 [09:27<00:00, 18.92s/it]
433
-
434
- 0it [00:00, ?it/s]
435
- 53it [00:06, 7.88it/s]
436
- 54it [00:06, 8.01it/s]
437
- 55it [00:07, 7.97it/s]/mnt/petrelfs/wangweiyun/miniconda3/envs/internvl/lib/python3.10/site-packages/transformers/generation/configuration_utils.py:392: UserWarning: `do_sample` is set to `False`. However, `temperature` is set to `0.0` -- this flag is only used in sample-based generation modes. You should set `do_sample=True` or unset `temperature`.
438
- warnings.warn(
439
-
440
- 56it [00:07, 7.97it/s]
441
- 57it [00:07, 7.94it/s]
442
- 1it [00:00, 1.58it/s]
443
- 58it [00:07, 7.91it/s]
444
- 59it [00:07, 8.41it/s]
445
- 61it [00:07, 9.17it/s]
446
- 2it [00:00, 2.18it/s]
447
- 62it [00:07, 9.08it/s]
448
- 4it [00:01, 4.43it/s]
449
- 63it [00:08, 9.12it/s]
450
- 64it [00:08, 9.04it/s]
451
- 6it [00:01, 5.75it/s]
452
- 7it [00:01, 6.41it/s]
453
- 66it [00:08, 9.57it/s]
454
- 8it [00:01, 6.88it/s]
455
- 68it [00:08, 10.12it/s]
456
- 69it [00:08, 9.77it/s]
457
- 10it [00:01, 7.87it/s]
458
- 12it [00:01, 8.89it/s]
459
- 71it [00:08, 9.83it/s]
460
- 72it [00:08, 9.70it/s]
461
- 14it [00:02, 8.98it/s]
462
- 73it [00:09, 9.71it/s]
463
- 15it [00:02, 9.02it/s]
464
- 75it [00:09, 10.64it/s]
465
- 17it [00:02, 10.04it/s]
466
- 77it [00:09, 9.75it/s]
467
- 19it [00:02, 8.88it/s]
468
- 79it [00:09, 10.33it/s]
469
- 21it [00:02, 8.90it/s]
470
- 81it [00:09, 10.18it/s]
471
- 22it [00:03, 8.75it/s]
472
- 23it [00:03, 8.39it/s]
473
- 83it [00:10, 9.29it/s]
474
- 85it [00:10, 9.90it/s]
475
- 25it [00:03, 8.84it/s]
476
- 27it [00:03, 9.61it/s]
477
- 87it [00:10, 9.17it/s]
478
- 29it [00:03, 10.42it/s]
479
- 88it [00:10, 8.72it/s]
480
- 31it [00:03, 11.27it/s]
481
- 90it [00:10, 9.47it/s]
482
- 33it [00:04, 9.85it/s]
483
- 91it [00:11, 7.54it/s]
484
- 35it [00:04, 9.68it/s]
485
- 92it [00:11, 6.86it/s]
486
- 93it [00:11, 7.17it/s]
487
- 94it [00:11, 7.71it/s]
488
- 37it [00:04, 9.21it/s]
489
- 95it [00:11, 7.54it/s]
490
- 39it [00:04, 9.07it/s]
491
- 96it [00:11, 6.67it/s]
492
- 41it [00:05, 9.14it/s]
493
- 97it [00:12, 5.81it/s]
494
- 42it [00:05, 8.63it/s]
495
- 98it [00:12, 6.29it/s]
496
- 43it [00:05, 8.46it/s]
497
- 99it [00:12, 6.50it/s]
498
- 44it [00:05, 7.02it/s]
499
- 45it [00:05, 7.22it/s]
500
- 100it [00:12, 5.49it/s]
501
- 46it [00:05, 7.38it/s]
502
- 102it [00:12, 6.67it/s]
503
- 47it [00:05, 7.50it/s]
504
- 49it [00:06, 9.01it/s]
505
- 103it [00:13, 5.42it/s]
506
- 51it [00:06, 9.61it/s]
507
- 104it [00:13, 5.90it/s]
508
- 52it [00:06, 9.19it/s]
509
- 105it [00:13, 6.34it/s]
510
- 53it [00:06, 8.82it/s]
511
- 106it [00:13, 6.69it/s]
512
- 54it [00:06, 8.55it/s]
513
- 56it [00:06, 8.86it/s]
514
- 108it [00:13, 6.22it/s]
515
- 58it [00:07, 9.96it/s]
516
- 59it [00:07, 9.43it/s]
517
- 110it [00:14, 6.47it/s]
518
- 61it [00:07, 9.03it/s]
519
- 111it [00:14, 5.92it/s]
520
- 112it [00:14, 7.77it/s]
521
-
522
- 62it [00:07, 7.91it/s]
523
- 63it [00:07, 6.50it/s]
524
- 64it [00:08, 5.65it/s]
525
- 65it [00:08, 6.12it/s]
526
- 66it [00:08, 6.51it/s]
527
- 67it [00:08, 6.85it/s]
528
- 68it [00:08, 6.98it/s]
529
- 70it [00:09, 5.94it/s]
530
- 71it [00:09, 6.30it/s]
531
- 72it [00:09, 6.63it/s]
532
- 100%|██████████| 30/30 [09:37<00:00, 29.17s/it]
533
- 100%|██████████| 30/30 [09:37<00:00, 19.23s/it]
534
-
535
- 0it [00:00, ?it/s]
536
- 73it [00:09, 6.72it/s]
537
- 74it [00:09, 6.95it/s]
538
- 75it [00:09, 7.18it/s]/mnt/petrelfs/wangweiyun/miniconda3/envs/internvl/lib/python3.10/site-packages/transformers/generation/configuration_utils.py:392: UserWarning: `do_sample` is set to `False`. However, `temperature` is set to `0.0` -- this flag is only used in sample-based generation modes. You should set `do_sample=True` or unset `temperature`.
539
- warnings.warn(
540
-
541
- 76it [00:09, 7.18it/s]
542
- 1it [00:00, 1.61it/s]
543
- 77it [00:09, 7.29it/s]
544
- 78it [00:10, 7.45it/s]
545
- 79it [00:10, 8.06it/s]
546
- 2it [00:00, 2.31it/s]
547
- 80it [00:10, 8.52it/s]
548
- 81it [00:10, 8.91it/s]
549
- 4it [00:01, 4.39it/s]
550
- 82it [00:10, 9.20it/s]
551
- 5it [00:01, 5.02it/s]
552
- 83it [00:10, 8.77it/s]
553
- 6it [00:01, 5.91it/s]
554
- 7it [00:01, 6.73it/s]
555
- 85it [00:10, 9.18it/s]
556
- 8it [00:01, 7.47it/s]
557
- 86it [00:10, 9.36it/s]
558
- 87it [00:11, 8.91it/s]
559
- 10it [00:01, 9.36it/s]
560
- 88it [00:11, 8.54it/s]
561
- 12it [00:01, 9.51it/s]
562
- 89it [00:11, 8.34it/s]
563
- 90it [00:11, 8.22it/s]
564
- 14it [00:02, 9.26it/s]
565
- 15it [00:02, 8.93it/s]
566
- 92it [00:11, 8.49it/s]
567
- 100%|██████████| 30/30 [09:39<00:00, 29.01s/it]
568
- 100%|██████████| 30/30 [09:39<00:00, 19.32s/it]
569
-
570
- 17it [00:02, 10.14it/s]
571
- 0it [00:00, ?it/s]
572
- 93it [00:11, 7.64it/s]
573
- 94it [00:11, 8.12it/s]
574
- 19it [00:02, 10.28it/s]
575
- 96it [00:12, 10.19it/s]
576
- 21it [00:02, 10.10it/s]
577
- 98it [00:12, 11.76it/s]/mnt/petrelfs/wangweiyun/miniconda3/envs/internvl/lib/python3.10/site-packages/transformers/generation/configuration_utils.py:392: UserWarning: `do_sample` is set to `False`. However, `temperature` is set to `0.0` -- this flag is only used in sample-based generation modes. You should set `do_sample=True` or unset `temperature`.
578
- warnings.warn(
579
-
580
- 23it [00:03, 10.45it/s]
581
- 100it [00:12, 10.51it/s]
582
- 1it [00:00, 1.37it/s]
583
- 25it [00:03, 10.26it/s]
584
- 102it [00:12, 9.47it/s]
585
- 27it [00:03, 10.56it/s]
586
- 2it [00:01, 2.00it/s]
587
- 29it [00:03, 10.76it/s]
588
- 104it [00:12, 8.89it/s]
589
- 100%|██████████| 30/30 [09:40<00:00, 29.02s/it]
590
- 100%|██████████| 30/30 [09:40<00:00, 19.36s/it]
591
-
592
- 3it [00:01, 2.86it/s]
593
- 105it [00:13, 9.04it/s]
594
- 0it [00:00, ?it/s]
595
- 106it [00:13, 8.76it/s]
596
- 5it [00:01, 5.00it/s]
597
- 107it [00:13, 8.54it/s]
598
- 7it [00:01, 6.90it/s]
599
- 108it [00:13, 8.36it/s]
600
- 8it [00:01, 5.86it/s]
601
- 110it [00:13, 8.99it/s]
602
- 31it [00:04, 5.72it/s]
603
- 111it [00:13, 8.71it/s]
604
- 9it [00:01, 6.19it/s]
605
- 10it [00:02, 6.56it/s]
606
- 112it [00:13, 8.09it/s]
607
- /mnt/petrelfs/wangweiyun/miniconda3/envs/internvl/lib/python3.10/site-packages/transformers/generation/configuration_utils.py:392: UserWarning: `do_sample` is set to `False`. However, `temperature` is set to `0.0` -- this flag is only used in sample-based generation modes. You should set `do_sample=True` or unset `temperature`.
608
- warnings.warn(
609
-
610
- 32it [00:04, 5.13it/s]
611
- 11it [00:02, 7.25it/s]
612
- 12it [00:02, 7.85it/s]
613
- 1it [00:01, 1.10s/it]
614
- 14it [00:02, 8.81it/s]
615
- 33it [00:05, 4.02it/s]
616
- 15it [00:02, 8.56it/s]
617
- 2it [00:01, 1.52it/s]
618
- 17it [00:02, 9.60it/s]
619
- 3it [00:01, 2.39it/s]
620
- 19it [00:02, 10.77it/s]
621
- 4it [00:01, 3.29it/s]
622
- 21it [00:03, 11.31it/s]
623
- 23it [00:03, 11.61it/s]
624
- 34it [00:05, 2.87it/s]
625
- 5it [00:02, 2.98it/s]
626
- 35it [00:05, 3.39it/s]
627
- 25it [00:03, 11.81it/s]
628
- 36it [00:05, 3.98it/s]
629
- 6it [00:02, 3.59it/s]
630
- 27it [00:03, 12.10it/s]
631
- 37it [00:06, 4.58it/s]
632
- 29it [00:03, 13.04it/s]
633
- 7it [00:02, 3.23it/s]
634
- 31it [00:03, 10.82it/s]
635
- 97%|█████████▋| 29/30 [09:43<00:28, 28.89s/it]
636
- 9it [00:02, 4.88it/s]
637
- 33it [00:04, 10.51it/s]
638
- 38it [00:06, 3.04it/s]
639
- 35it [00:04, 10.51it/s]
640
- 37it [00:04, 9.51it/s]
641
- 10it [00:03, 3.49it/s]
642
- 39it [00:04, 10.16it/s]
643
- 39it [00:07, 2.36it/s]
644
- 41it [00:04, 9.90it/s]
645
- 40it [00:07, 2.96it/s]
646
- 11it [00:03, 2.89it/s]
647
- 43it [00:05, 9.65it/s]
648
- 13it [00:04, 4.17it/s]
649
- 45it [00:05, 8.94it/s]
650
- 46it [00:05, 8.74it/s]
651
- 41it [00:08, 2.49it/s]
652
- 48it [00:05, 8.98it/s]
653
- 15it [00:04, 4.03it/s]
654
- 49it [00:05, 8.76it/s]
655
- 51it [00:06, 9.17it/s]
656
- 100%|██████████| 30/30 [09:45<00:00, 26.83s/it]
657
- 100%|██████████| 30/30 [09:45<00:00, 19.52s/it]
658
-
659
- 0it [00:00, ?it/s]
660
- 52it [00:06, 8.89it/s]
661
- 53it [00:06, 8.64it/s]
662
- 43it [00:08, 2.53it/s]
663
- 16it [00:05, 3.21it/s]
664
- 17it [00:05, 3.81it/s]
665
- 55it [00:06, 9.63it/s]/mnt/petrelfs/wangweiyun/miniconda3/envs/internvl/lib/python3.10/site-packages/transformers/generation/configuration_utils.py:392: UserWarning: `do_sample` is set to `False`. However, `temperature` is set to `0.0` -- this flag is only used in sample-based generation modes. You should set `do_sample=True` or unset `temperature`.
666
- warnings.warn(
667
-
668
- 18it [00:05, 4.34it/s]
669
- 19it [00:05, 5.09it/s]
670
- 20it [00:05, 5.64it/s]
671
- 1it [00:00, 1.56it/s]
672
- 56it [00:06, 6.45it/s]
673
- 44it [00:09, 2.18it/s]
674
- 57it [00:07, 5.43it/s]
675
- 2it [00:00, 2.22it/s]
676
- 58it [00:07, 6.14it/s]
677
- 21it [00:06, 3.92it/s]
678
- 3it [00:01, 3.24it/s]
679
- 60it [00:07, 7.20it/s]
680
- 4it [00:01, 4.17it/s]
681
- 23it [00:06, 5.18it/s]
682
- 61it [00:07, 7.35it/s]
683
- 5it [00:01, 4.98it/s]
684
- 45it [00:10, 2.01it/s]
685
- 6it [00:01, 5.69it/s]
686
- 25it [00:06, 6.23it/s]
687
- 63it [00:07, 8.21it/s]
688
- 64it [00:07, 8.14it/s]
689
- 7it [00:01, 5.46it/s]
690
- 46it [00:10, 2.28it/s]
691
- 27it [00:06, 7.32it/s]
692
- 8it [00:01, 6.05it/s]
693
- 28it [00:06, 7.72it/s]
694
- 29it [00:06, 8.13it/s]
695
- 9it [00:01, 6.59it/s]
696
- 10it [00:02, 6.55it/s]
697
- 31it [00:07, 9.09it/s]
698
- 47it [00:10, 2.28it/s]
699
- 11it [00:02, 7.32it/s]
700
- 32it [00:07, 8.69it/s]
701
- 12it [00:02, 7.49it/s]
702
- 65it [00:08, 4.07it/s]
703
- 33it [00:07, 8.48it/s]
704
- 13it [00:02, 7.61it/s]
705
- 67it [00:08, 5.28it/s]
706
- 35it [00:07, 8.98it/s]
707
- 48it [00:11, 2.26it/s]
708
- 14it [00:02, 7.08it/s]
709
- 68it [00:08, 5.73it/s]
710
- 36it [00:07, 9.16it/s]
711
- 15it [00:02, 7.30it/s]
712
- 70it [00:09, 7.30it/s]
713
- 38it [00:07, 10.14it/s]
714
- 49it [00:11, 2.52it/s]
715
- 17it [00:02, 8.67it/s]
716
- 71it [00:09, 7.43it/s]
717
- 40it [00:07, 10.86it/s]
718
- 18it [00:03, 7.88it/s]
719
- 42it [00:08, 10.28it/s]
720
- 20it [00:03, 8.75it/s]
721
- 73it [00:09, 6.17it/s]
722
- 44it [00:08, 10.59it/s]
723
- 21it [00:03, 8.49it/s]
724
- 74it [00:09, 6.48it/s]
725
- 22it [00:03, 8.29it/s]
726
- 50it [00:12, 2.10it/s]
727
- 46it [00:08, 10.08it/s]
728
- 75it [00:09, 6.75it/s]
729
- 23it [00:03, 8.18it/s]
730
- 51it [00:12, 2.68it/s]
731
- 24it [00:03, 8.08it/s]
732
- 48it [00:08, 10.11it/s]
733
- 77it [00:10, 6.84it/s]
734
- 78it [00:10, 7.18it/s]
735
- 50it [00:08, 9.99it/s]
736
- 26it [00:04, 8.39it/s]
737
- 79it [00:10, 7.33it/s]
738
- 27it [00:04, 8.27it/s]
739
- 80it [00:10, 7.47it/s]
740
- 28it [00:04, 8.16it/s]
741
- 52it [00:09, 9.18it/s]
742
- 52it [00:12, 2.23it/s]
743
- 53it [00:09, 9.17it/s]
744
- 82it [00:10, 9.40it/s]
745
- 30it [00:04, 8.82it/s]
746
- 83it [00:10, 8.98it/s]
747
- 55it [00:09, 9.63it/s]
748
- 53it [00:13, 2.50it/s]
749
- 31it [00:04, 8.56it/s]
750
- 84it [00:10, 8.69it/s]
751
- 32it [00:04, 8.62it/s]
752
- 57it [00:09, 10.66it/s]
753
- 33it [00:04, 8.40it/s]
754
- 59it [00:09, 11.13it/s]
755
- 86it [00:11, 8.74it/s]
756
- 34it [00:04, 8.25it/s]
757
- 87it [00:11, 8.52it/s]
758
- 61it [00:09, 11.49it/s]
759
- 88it [00:11, 8.35it/s]
760
- 36it [00:05, 9.27it/s]
761
- 63it [00:10, 10.95it/s]
762
- 54it [00:13, 2.09it/s]
763
- 89it [00:11, 8.23it/s]
764
- 38it [00:05, 9.11it/s]
765
- 91it [00:11, 10.66it/s]
766
- 55it [00:14, 2.60it/s]
767
- 65it [00:10, 11.21it/s]
768
- 39it [00:05, 8.79it/s]
769
- 56it [00:14, 3.29it/s]
770
- 67it [00:10, 11.46it/s]
771
- 93it [00:11, 10.06it/s]
772
- 57it [00:14, 3.96it/s]
773
- 41it [00:05, 9.53it/s]
774
- 69it [00:10, 11.93it/s]
775
- 42it [00:05, 9.10it/s]
776
- 95it [00:12, 9.56it/s]
777
- 71it [00:10, 11.49it/s]
778
- 43it [00:05, 8.79it/s]
779
- 97it [00:12, 9.71it/s]
780
- 44it [00:06, 8.54it/s]
781
- 73it [00:11, 11.28it/s]
782
- 98it [00:12, 9.31it/s]
783
- 45it [00:06, 8.36it/s]
784
- 58it [00:14, 2.80it/s]
785
- 100it [00:12, 8.96it/s]
786
- 47it [00:06, 8.84it/s]
787
- 75it [00:11, 8.58it/s]
788
- 101it [00:12, 9.12it/s]
789
- 49it [00:06, 9.27it/s]
790
- 77it [00:11, 9.68it/s]
791
- 103it [00:12, 10.79it/s]
792
- 50it [00:06, 8.94it/s]
793
- 79it [00:11, 10.18it/s]
794
- 105it [00:13, 10.95it/s]
795
- 52it [00:06, 10.25it/s]
796
- 59it [00:15, 2.21it/s]
797
- 107it [00:13, 10.49it/s]
798
- 54it [00:07, 11.03it/s]
799
- 81it [00:11, 9.38it/s]
800
- 83it [00:12, 9.50it/s]
801
- 109it [00:13, 9.47it/s]
802
- 56it [00:07, 9.81it/s]
803
- 85it [00:12, 9.98it/s]
804
- 111it [00:13, 9.43it/s]
805
- 58it [00:07, 9.09it/s]
806
- 60it [00:16, 1.96it/s]
807
- 112it [00:13, 8.10it/s]
808
-
809
- 87it [00:12, 9.40it/s]
810
- 59it [00:07, 8.84it/s]
811
- 61it [00:16, 2.53it/s]
812
- 60it [00:07, 8.61it/s]
813
- 88it [00:12, 9.01it/s]
814
- 62it [00:16, 3.17it/s]
815
- 89it [00:12, 8.77it/s]
816
- 62it [00:08, 8.71it/s]
817
- 91it [00:13, 10.41it/s]
818
- 64it [00:16, 4.50it/s]
819
- 66it [00:16, 5.71it/s]
820
- 93it [00:13, 9.63it/s]
821
- 64it [00:08, 7.50it/s]
822
- 67it [00:17, 6.29it/s]
823
- 95it [00:13, 10.47it/s]
824
- 68it [00:17, 6.87it/s]
825
- 65it [00:08, 7.58it/s]
826
- 66it [00:08, 7.66it/s]
827
- 69it [00:17, 7.07it/s]
828
- 97it [00:13, 9.81it/s]
829
- 67it [00:08, 7.74it/s]
830
- 71it [00:17, 8.27it/s]
831
- 99it [00:13, 8.99it/s]
832
- 68it [00:08, 6.52it/s]
833
- 73it [00:17, 9.12it/s]
834
- 100it [00:14, 8.75it/s]
835
- 69it [00:09, 6.83it/s]
836
- 74it [00:17, 8.62it/s]
837
- 101it [00:14, 8.97it/s]
838
- 70it [00:09, 7.45it/s]
839
- 75it [00:17, 8.87it/s]
840
- 71it [00:09, 7.55it/s]
841
- 103it [00:14, 9.77it/s]
842
- 77it [00:18, 9.00it/s]
843
- 105it [00:14, 10.30it/s]
844
- 73it [00:09, 8.24it/s]
845
- 78it [00:18, 8.69it/s]
846
- 79it [00:18, 8.92it/s]
847
- 107it [00:14, 10.06it/s]
848
- 75it [00:09, 8.47it/s]
849
- 81it [00:18, 9.15it/s]
850
- 109it [00:14, 10.14it/s]
851
- 77it [00:09, 9.25it/s]
852
- 82it [00:18, 9.25it/s]
853
- 78it [00:10, 8.38it/s]
854
- 111it [00:15, 10.03it/s]
855
- 84it [00:18, 9.65it/s]
856
- 79it [00:10, 7.53it/s]
857
- 85it [00:18, 9.39it/s]
858
- 113it [00:15, 9.85it/s]
859
- 113it [00:15, 7.37it/s]
860
-
861
- 86it [00:19, 9.44it/s]
862
- 80it [00:10, 7.63it/s]
863
- 88it [00:19, 11.04it/s]
864
- 82it [00:10, 7.65it/s]
865
- 90it [00:19, 9.38it/s]
866
- 83it [00:10, 6.59it/s]
867
- 91it [00:19, 8.99it/s]
868
- 84it [00:11, 6.88it/s]
869
- 92it [00:19, 8.68it/s]
870
- 85it [00:11, 6.99it/s]
871
- 93it [00:19, 8.46it/s]
872
- 86it [00:11, 7.22it/s]
873
- 94it [00:19, 8.29it/s]
874
- 88it [00:11, 8.22it/s]
875
- 95it [00:20, 7.22it/s]
876
- 96it [00:20, 7.12it/s]
877
- 89it [00:11, 7.27it/s]
878
- 97it [00:20, 6.71it/s]
879
- 91it [00:11, 8.20it/s]
880
- 98it [00:20, 6.99it/s]
881
- 92it [00:11, 7.98it/s]
882
- 99it [00:20, 7.22it/s]
883
- 93it [00:12, 7.97it/s]
884
- 100it [00:20, 7.39it/s]
885
- 101it [00:20, 8.01it/s]
886
- 95it [00:12, 8.67it/s]
887
- 96it [00:12, 8.49it/s]
888
- 102it [00:21, 7.08it/s]
889
- 97it [00:12, 8.33it/s]
890
- 103it [00:21, 7.29it/s]
891
- 98it [00:12, 8.21it/s]
892
- 100%|██████████| 30/30 [09:58<00:00, 29.34s/it]
893
- 100%|██████████| 30/30 [09:58<00:00, 19.95s/it]
894
-
895
- 104it [00:21, 6.37it/s]
896
- 0it [00:00, ?it/s]
897
- 99it [00:12, 8.12it/s]
898
- 105it [00:21, 6.32it/s]
899
- 101it [00:13, 9.18it/s]
900
- 106it [00:21, 6.71it/s]
901
- 103it [00:13, 9.48it/s]/mnt/petrelfs/wangweiyun/miniconda3/envs/internvl/lib/python3.10/site-packages/transformers/generation/configuration_utils.py:392: UserWarning: `do_sample` is set to `False`. However, `temperature` is set to `0.0` -- this flag is only used in sample-based generation modes. You should set `do_sample=True` or unset `temperature`.
902
- warnings.warn(
903
-
904
- 107it [00:21, 6.83it/s]
905
- 104it [00:13, 9.06it/s]
906
- 108it [00:22, 6.77it/s]
907
- 1it [00:00, 1.43it/s]
908
- 110it [00:22, 6.40it/s]
909
- 105it [00:13, 5.70it/s]
910
- 2it [00:00, 2.19it/s]
911
- 111it [00:22, 6.16it/s]
912
- 3it [00:01, 3.18it/s]
913
- 113it [00:22, 7.07it/s]
914
- 113it [00:22, 4.94it/s]
915
-
916
- 107it [00:14, 4.70it/s]
917
- 4it [00:01, 2.95it/s]
918
- 5it [00:01, 3.73it/s]
919
- 109it [00:14, 5.66it/s]
920
- 6it [00:01, 4.54it/s]
921
- 110it [00:14, 6.00it/s]
922
- 7it [00:01, 5.51it/s]
923
- 8it [00:02, 5.83it/s]
924
- 9it [00:02, 5.79it/s]
925
- 111it [00:15, 4.42it/s]
926
- 10it [00:02, 6.25it/s]
927
- 112it [00:15, 4.95it/s]
928
- 11it [00:02, 7.04it/s]
929
- 12it [00:02, 7.27it/s]
930
- 13it [00:02, 7.45it/s]
931
- 113it [00:15, 3.95it/s]
932
- 113it [00:15, 7.24it/s]
933
-
934
- 14it [00:02, 7.58it/s]
935
- 15it [00:02, 7.54it/s]
936
- 16it [00:03, 7.64it/s]
937
- 17it [00:03, 7.71it/s]
938
- 18it [00:03, 7.52it/s]
939
- 19it [00:03, 7.82it/s]
940
- 20it [00:03, 8.35it/s]
941
- 21it [00:03, 8.21it/s]
942
- 23it [00:03, 8.09it/s]
943
- 24it [00:04, 8.02it/s]
944
- 26it [00:04, 7.97it/s]
945
- 27it [00:04, 7.70it/s]
946
- 28it [00:04, 8.15it/s]
947
- 30it [00:04, 8.51it/s]
948
- 31it [00:04, 8.59it/s]
949
- 33it [00:05, 8.99it/s]
950
- 34it [00:05, 8.73it/s]
951
- 35it [00:05, 8.19it/s]
952
- 36it [00:05, 8.06it/s]
953
- 38it [00:05, 9.21it/s]
954
- 40it [00:05, 9.26it/s]
955
- 42it [00:06, 9.26it/s]
956
- 44it [00:06, 10.06it/s]
957
- 46it [00:06, 10.25it/s]
958
- 48it [00:06, 9.10it/s]
959
- 50it [00:06, 9.52it/s]
960
- 51it [00:07, 9.59it/s]
961
- 53it [00:07, 10.39it/s]
962
- 55it [00:07, 8.69it/s]
963
- 57it [00:07, 9.61it/s]
964
- 59it [00:07, 9.87it/s]
965
- 61it [00:08, 9.85it/s]
966
- 63it [00:08, 10.29it/s]
967
- 65it [00:08, 10.87it/s]
968
- 67it [00:08, 12.00it/s]
969
- 69it [00:08, 10.81it/s]
970
- 71it [00:08, 10.56it/s]
971
- 73it [00:09, 11.16it/s]
972
- 75it [00:09, 10.74it/s]
973
- 77it [00:09, 9.84it/s]
974
- 79it [00:09, 9.84it/s]
975
- 81it [00:09, 9.32it/s]
976
- 83it [00:10, 9.16it/s]
977
- 84it [00:10, 9.27it/s]
978
- 85it [00:10, 8.92it/s]
979
- 86it [00:10, 9.13it/s]
980
- 88it [00:10, 9.39it/s]
981
- 89it [00:10, 9.50it/s]
982
- 90it [00:10, 9.07it/s]
983
- 91it [00:11, 8.70it/s]
984
- 93it [00:11, 9.94it/s]
985
- 94it [00:11, 8.48it/s]
986
- 95it [00:11, 8.66it/s]
987
- 96it [00:11, 8.42it/s]
988
- 97it [00:11, 8.28it/s]
989
- 100%|██████████| 30/30 [10:10<00:00, 28.34s/it]
990
- 100%|██████████| 30/30 [10:10<00:00, 20.35s/it]
991
-
992
- 99it [00:12, 8.92it/s]
993
- 0it [00:00, ?it/s]
994
- 100it [00:12, 9.15it/s]
995
- 101it [00:12, 9.33it/s]
996
- 102it [00:12, 9.47it/s]/mnt/petrelfs/wangweiyun/miniconda3/envs/internvl/lib/python3.10/site-packages/transformers/generation/configuration_utils.py:392: UserWarning: `do_sample` is set to `False`. However, `temperature` is set to `0.0` -- this flag is only used in sample-based generation modes. You should set `do_sample=True` or unset `temperature`.
997
- warnings.warn(
998
-
999
- 103it [00:12, 7.44it/s]
1000
- 104it [00:12, 7.41it/s]
1001
- 1it [00:00, 1.51it/s]
1002
- 106it [00:12, 7.96it/s]
1003
- 2it [00:00, 2.21it/s]
1004
- 107it [00:13, 7.93it/s]
1005
- 3it [00:01, 3.21it/s]
1006
- 109it [00:13, 8.74it/s]
1007
- 4it [00:01, 4.01it/s]
1008
- 111it [00:13, 10.01it/s]
1009
- 6it [00:01, 5.86it/s]
1010
- 112it [00:13, 8.28it/s]
1011
-
1012
- 7it [00:01, 4.68it/s]
1013
- 8it [00:02, 3.83it/s]
1014
- 10it [00:02, 5.46it/s]
1015
- 11it [00:02, 5.79it/s]
1016
- 12it [00:02, 5.20it/s]
1017
- 13it [00:02, 5.66it/s]
1018
- 14it [00:03, 5.31it/s]
1019
- 15it [00:03, 5.61it/s]
1020
- 17it [00:03, 6.80it/s]
1021
- 18it [00:03, 6.74it/s]
1022
- 19it [00:03, 5.50it/s]
1023
- 21it [00:04, 5.48it/s]
1024
- 22it [00:04, 5.48it/s]
1025
- 23it [00:04, 5.46it/s]
1026
- 25it [00:04, 6.29it/s]
1027
- 26it [00:05, 6.36it/s]
1028
- 27it [00:05, 5.33it/s]
1029
- 28it [00:05, 5.81it/s]
1030
- 29it [00:05, 5.62it/s]
1031
- 31it [00:05, 6.04it/s]
1032
- 33it [00:06, 7.14it/s]
1033
- 34it [00:06, 6.60it/s]
1034
- 35it [00:06, 5.49it/s]
1035
- 36it [00:06, 5.95it/s]
1036
- 37it [00:06, 6.20it/s]
1037
- 38it [00:06, 6.57it/s]
1038
- 40it [00:07, 7.73it/s]
1039
- 41it [00:07, 7.76it/s]
1040
- 42it [00:07, 7.79it/s]
1041
- 43it [00:07, 7.71it/s]
1042
- 45it [00:07, 8.35it/s]
1043
- 46it [00:07, 8.25it/s]
1044
- 48it [00:08, 8.90it/s]
1045
- 50it [00:08, 9.40it/s]
1046
- 51it [00:08, 8.73it/s]/mnt/petrelfs/wangweiyun/miniconda3/envs/internvl/lib/python3.10/site-packages/PIL/Image.py:1000: UserWarning: Palette images with Transparency expressed in bytes should be converted to RGBA images
1047
- warnings.warn(
1048
-
1049
- 52it [00:08, 8.52it/s]
1050
- 53it [00:08, 8.36it/s]
1051
- 54it [00:08, 8.06it/s]
1052
- 55it [00:08, 8.02it/s]
1053
- 56it [00:09, 7.98it/s]
1054
- 57it [00:09, 7.96it/s]
1055
- 58it [00:09, 7.95it/s]
1056
- 60it [00:09, 8.77it/s]
1057
- 61it [00:09, 9.03it/s]
1058
- 62it [00:09, 8.70it/s]
1059
- 64it [00:09, 9.56it/s]
1060
- 65it [00:10, 9.10it/s]
1061
- 66it [00:10, 9.24it/s]
1062
- 67it [00:10, 8.83it/s]
1063
- 69it [00:10, 9.83it/s]
1064
- 71it [00:10, 10.72it/s]
1065
- 73it [00:10, 11.00it/s]
1066
- 75it [00:11, 10.13it/s]
1067
- 77it [00:11, 7.74it/s]
1068
- 79it [00:11, 8.43it/s]
1069
- 80it [00:11, 7.58it/s]
1070
- 82it [00:11, 9.19it/s]
1071
- 84it [00:12, 8.72it/s]
1072
- 85it [00:12, 8.53it/s]
1073
- 86it [00:12, 7.31it/s]
1074
- 87it [00:12, 7.78it/s]
1075
- 88it [00:12, 7.41it/s]
1076
- 89it [00:13, 6.48it/s]
1077
- 90it [00:13, 6.42it/s]
1078
- 91it [00:13, 6.76it/s]
1079
- 93it [00:13, 5.51it/s]
1080
- 95it [00:13, 6.30it/s]
1081
- 96it [00:14, 6.60it/s]
1082
- 98it [00:14, 7.76it/s]
1083
- 99it [00:14, 7.94it/s]
1084
- 100it [00:14, 7.93it/s]
1085
- 101it [00:14, 6.15it/s]
1086
- 103it [00:14, 7.88it/s]
1087
- 105it [00:15, 9.37it/s]
1088
- 107it [00:15, 9.29it/s]
1089
- 108it [00:15, 8.97it/s]
1090
- 110it [00:15, 9.13it/s]
1091
- 111it [00:15, 8.85it/s]
1092
- 112it [00:15, 9.07it/s]
1093
- 113it [00:16, 7.06it/s]
1094
- Evaluating MMMU_validation ...
1095
- Results saved to results/MMMU_validation_240807220709.json
1096
- Evaluating ...
1097
- python eval/mmmu/main_eval_only.py --output_path results/MMMU_validation_240807220709.json --answer_path eval/mmmu/answer_dict_val.json
1098
- Evaluating: Accounting
1099
- Evaluating: Agriculture
1100
- Evaluating: Architecture_and_Engineering
1101
- Evaluating: Art
1102
- Evaluating: Art_Theory
1103
- Evaluating: Basic_Medical_Science
1104
- Evaluating: Biology
1105
- Evaluating: Chemistry
1106
- Evaluating: Clinical_Medicine
1107
- Evaluating: Computer_Science
1108
- Evaluating: Design
1109
- Evaluating: Diagnostics_and_Laboratory_Medicine
1110
- Evaluating: Economics
1111
- Evaluating: Electronics
1112
- Evaluating: Energy_and_Power
1113
- Evaluating: Finance
1114
- Evaluating: Geography
1115
- Evaluating: History
1116
- Evaluating: Literature
1117
- Evaluating: Manage
1118
- Evaluating: Marketing
1119
- Evaluating: Materials
1120
- Evaluating: Math
1121
- Evaluating: Mechanical_Engineering
1122
- Evaluating: Music
1123
- Evaluating: Pharmacy
1124
- Evaluating: Physics
1125
- Evaluating: Psychology
1126
- Evaluating: Public_Health
1127
- Evaluating: Sociology
1128
- {'Overall-Art and Design':{'num': 120, 'acc': 0.408}, 'Art': {'num': 30, 'acc': 0.467}, 'Art_Theory': {'num': 30, 'acc': 0.433}, 'Design': {'num': 30, 'acc': 0.533}, 'Music': {'num': 30, 'acc': 0.2},
1129
- 'Overall-Business': {'num': 150, 'acc': 0.347}, 'Accounting': {'num': 30, 'acc': 0.367}, 'Economics': {'num': 30, 'acc': 0.333}, 'Finance': {'num': 30, 'acc': 0.333}, 'Manage': {'num': 30, 'acc': 0.367}, 'Marketing': {'num': 30, 'acc': 0.333},
1130
- 'Overall-Science': {'num': 150, 'acc': 0.227}, 'Biology': {'num': 30, 'acc': 0.267}, 'Chemistry': {'num': 30, 'acc': 0.1}, 'Geography': {'num': 30, 'acc': 0.167}, 'Math': {'num': 30, 'acc': 0.4}, 'Physics': {'num': 30, 'acc': 0.2},
1131
- 'Overall-Health and Medicine': {'num': 150, 'acc': 0.367}, 'Basic_Medical_Science': {'num': 30, 'acc': 0.433}, 'Clinical_Medicine': {'num': 30, 'acc': 0.4}, 'Diagnostics_and_Laboratory_Medicine': {'num': 30, 'acc': 0.4}, 'Pharmacy': {'num': 30, 'acc': 0.267}, 'Public_Health': {'num': 30, 'acc': 0.333},
1132
- 'Overall-Humanities and Social Science': {'num': 120, 'acc': 0.492}, 'History': {'num': 30, 'acc': 0.367}, 'Literature': {'num': 30, 'acc': 0.767}, 'Sociology': {'num': 30, 'acc': 0.467}, 'Psychology': {'num': 30, 'acc': 0.367},
1133
- 'Overall-Tech and Engineering': {'num': 210, 'acc': 0.305}, 'Agriculture': {'num': 30, 'acc': 0.433}, 'Architecture_and_Engineering': {'num': 30, 'acc': 0.233}, 'Computer_Science': {'num': 30, 'acc': 0.233}, 'Electronics': {'num': 30, 'acc': 0.4}, 'Energy_and_Power': {'num': 30, 'acc': 0.267}, 'Materials': {'num': 30, 'acc': 0.367}, 'Mechanical_Engineering': {'num': 30, 'acc': 0.2}, 'Overall': {'num': 900, 'acc': 0.348}}
1134
- Results saved to results/MMMU_validation_240807220709.jsonl
1135
- + '[' mmmu-val == mmmu-test ']'
1136
- + '[' mmmu-val == mmmu-dev-cot ']'
1137
- + '[' mmmu-val == mmmu-val-cot ']'
1138
- + '[' mmmu-val == mmmu-test-cot ']'
1139
- + '[' mmmu-val == mmvp ']'
1140
- + '[' mmmu-val == mathvista-testmini ']'
1141
- + '[' mmmu-val == mathvista-test ']'
1142
- + '[' mmmu-val == seed ']'
1143
- + '[' mmmu-val == mvbench ']'