|
The argument `trust_remote_code` is to be used with Auto classes. It has no effect here and is ignored. |
|
The argument `trust_remote_code` is to be used with Auto classes. It has no effect here and is ignored. |
|
language_model.model.layers.0 4 |
|
language_model.model.layers.1 4 |
|
language_model.model.layers.2 4 |
|
language_model.model.layers.3 4 |
|
language_model.model.layers.4 4 |
|
language_model.model.layers.5 4 |
|
language_model.model.layers.6 4 |
|
language_model.model.layers.7 4 |
|
language_model.model.layers.8 4 |
|
language_model.model.layers.9 4 |
|
language_model.model.layers.10 4 |
|
language_model.model.layers.11 4 |
|
language_model.model.layers.12 4 |
|
language_model.model.layers.13 4 |
|
language_model.model.layers.14 4 |
|
language_model.model.layers.15 4 |
|
language_model.model.layers.16 4 |
|
language_model.model.layers.17 4 |
|
language_model.model.layers.18 4 |
|
language_model.model.layers.19 4 |
|
language_model.model.layers.20 4 |
|
language_model.model.layers.21 4 |
|
language_model.model.layers.22 4 |
|
language_model.model.layers.23 4 |
|
vision_model.encoder.layers.0 0 |
|
vision_model.encoder.layers.1 0 |
|
vision_model.encoder.layers.2 0 |
|
vision_model.encoder.layers.3 0 |
|
vision_model.encoder.layers.4 0 |
|
vision_model.encoder.layers.5 0 |
|
vision_model.encoder.layers.6 0 |
|
vision_model.encoder.layers.7 0 |
|
vision_model.encoder.layers.8 0 |
|
vision_model.encoder.layers.9 0 |
|
vision_model.encoder.layers.10 0 |
|
vision_model.encoder.layers.11 0 |
|
vision_model.encoder.layers.12 0 |
|
vision_model.encoder.layers.13 0 |
|
vision_model.encoder.layers.14 0 |
|
vision_model.encoder.layers.15 0 |
|
vision_model.encoder.layers.16 0 |
|
vision_model.encoder.layers.17 0 |
|
vision_model.encoder.layers.18 0 |
|
vision_model.encoder.layers.19 0 |
|
vision_model.encoder.layers.20 0 |
|
vision_model.encoder.layers.21 0 |
|
vision_model.encoder.layers.22 0 |
|
vision_model.encoder.layers.23 0 |
|
vision_model.embeddings 0 |
|
mlp1 0 |
|
language_model.model.tok_embeddings 4 |
|
language_model.model.norm 4 |
|
language_model.output 4 |
|
language_model.model.embed_tokens 4 |
|
language_model.lm_head 4 |
|
The argument `trust_remote_code` is to be used with Auto classes. It has no effect here and is ignored. |
|
The argument `trust_remote_code` is to be used with Auto classes. It has no effect here and is ignored. |
|
Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. |
|
Rank [2] Begin to eval model work_dirs/share_internvl/InternVL2-2B on task ObjectExistence, devices: {device(type='cuda', index=2), device(type='cuda', index=6)} |
|
Initialization Finished |
|
Predicting ObjectExistence Using internvl |
|
Proceeding 5-length images samples | Num: 200 |
|
Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. |
|
Rank [1] Begin to eval model work_dirs/share_internvl/InternVL2-2B on task ObjectExistence, devices: {device(type='cuda', index=1), device(type='cuda', index=5)} |
|
Initialization Finished |
|
Predicting ObjectExistence Using internvl |
|
Proceeding 5-length images samples | Num: 200 |
|
Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. |
|
Rank [3] Begin to eval model work_dirs/share_internvl/InternVL2-2B on task ObjectExistence, devices: {device(type='cuda', index=3), device(type='cuda', index=7)} |
|
Initialization Finished |
|
Predicting ObjectExistence Using internvl |
|
Proceeding 5-length images samples | Num: 200 |
|
Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. |
|
Rank [0] Begin to eval model work_dirs/share_internvl/InternVL2-2B on task ObjectExistence, devices: {device(type='cuda', index=0), device(type='cuda', index=4)} |
|
Initialization Finished |
|
Predicting ObjectExistence Using internvl |
|
Proceeding 5-length images samples | Num: 200 |
|
0%| | 0/50 [00:00<?, ?it/s]
2%|β | 1/50 [00:01<01:15, 1.55s/it]
4%|β | 2/50 [00:01<00:35, 1.36it/s]
6%|β | 3/50 [00:02<00:26, 1.80it/s]
8%|β | 4/50 [00:02<00:18, 2.47it/s]
10%|β | 5/50 [00:02<00:22, 2.01it/s]
12%|ββ | 6/50 [00:03<00:18, 2.37it/s]
14%|ββ | 7/50 [00:03<00:14, 2.95it/s]
16%|ββ | 8/50 [00:03<00:11, 3.53it/s]
18%|ββ | 9/50 [00:03<00:10, 4.05it/s]
20%|ββ | 10/50 [00:04<00:12, 3.26it/s]
22%|βββ | 11/50 [00:04<00:13, 2.98it/s]
24%|βββ | 12/50 [00:04<00:10, 3.47it/s]
26%|βββ | 13/50 [00:04<00:09, 3.97it/s]
28%|βββ | 14/50 [00:05<00:11, 3.01it/s]
30%|βββ | 15/50 [00:05<00:13, 2.53it/s]
32%|ββββ | 16/50 [00:06<00:14, 2.31it/s]
34%|ββββ | 17/50 [00:06<00:11, 2.84it/s]
36%|ββββ | 18/50 [00:06<00:09, 3.33it/s]
38%|ββββ | 19/50 [00:06<00:08, 0%| | 0/50 [00:00<?, ?it/s]
2%|β | 1/50 [00:01<01:18, 1.59s/it]
4%|β | 2/50 [00:01<00:36, 1.32it/s]
6%|β | 3/50 [00:02<00:25, 1.86it/s]
8%|β | 4/50 [00:02<00:18, 2.49it/s]
10%|β | 5/50 [00:02<00:21, 2.12it/s]
12%|ββ | 6/50 [00:03<00:21, 2.02it/s]
14%|ββ | 7/50 [00:03<00:17, 2.53it/s]
16%|ββ | 8/50 [00:03<00:17, 2.47it/s]
18%|ββ | 9/50 [00:04<00:16, 2.46it/s]
20%|ββ | 10/50 [00:04<00:13, 3.01it/s]
22%|βββ | 11/50 [00:04<00:11, 3.53it/s]
24%|βββ | 12/50 [00:05<00:13, 2.75it/s]
26%|βββ | 13/50 [00:05<00:15, 2.41it/s]
28%|βββ | 14/50 [00:06<00:15, 2.36it/s]
30%|βββ | 15/50 [00:06<00:12, 2.80it/s]
32%|ββββ | 16/50 [00:06<00:10, 3.29it/s]
34%|ββββ | 17/50 [00:07<00:13, 2.39it/s]
36%|ββββ | 18/50 [00:07<00:11, 2.91it/s]
38%|ββββ | 19/50 [00:08<00:12, 0%| | 0/50 [00:00<?, ?it/s]
2%|β | 1/50 [00:01<01:19, 1.62s/it]
4%|β | 2/50 [00:02<00:43, 1.11it/s]
6%|β | 3/50 [00:02<00:27, 1.74it/s]
8%|β | 4/50 [00:02<00:27, 1.65it/s]
10%|β | 5/50 [00:03<00:22, 2.05it/s]
12%|ββ | 6/50 [00:03<00:17, 2.57it/s]
14%|ββ | 7/50 [00:03<00:13, 3.16it/s]
16%|ββ | 8/50 [00:03<00:11, 3.74it/s]
18%|ββ | 9/50 [00:04<00:12, 3.28it/s]
20%|ββ | 10/50 [00:04<00:15, 2.64it/s]
22%|βββ | 11/50 [00:04<00:12, 3.17it/s]
24%|βββ | 12/50 [00:05<00:14, 2.63it/s]
26%|βββ | 13/50 [00:05<00:16, 2.31it/s]
28%|βββ | 14/50 [00:06<00:17, 2.11it/s]
30%|βββ | 15/50 [00:06<00:13, 2.63it/s]
32%|ββββ | 16/50 [00:06<00:10, 3.12it/s]
34%|ββββ | 17/50 [00:07<00:13, 2.37it/s]
36%|ββββ | 18/50 [00:08<00:15, 2.12it/s]
38%|ββββ | 19/50 [00:08<00:11, 3.86it/s]
40%|ββββ | 20/50 [00:07<00:10, 2.97it/s]
42%|βββββ | 21/50 [00:08<00:12, 2.36it/s]
44%|βββββ | 22/50 [00:08<00:09, 2.83it/s]
46%|βββββ | 23/50 [00:08<00:07, 3.38it/s]
48%|βββββ | 24/50 [00:08<00:06, 3.91it/s]
50%|βββββ | 25/50 [00:08<00:05, 4.40it/s]
52%|ββββββ | 26/50 [00:08<00:05, 4.48it/s]
54%|ββββββ | 27/50 [00:09<00:04, 4.79it/s]
56%|ββββββ | 28/50 [00:09<00:05, 4.25it/s]
58%|ββββββ | 29/50 [00:09<00:04, 4.71it/s]
60%|ββββββ | 30/50 [00:09<00:03, 5.09it/s]
62%|βββββββ | 31/50 [00:09<00:03, 5.36it/s]
64%|βββββββ | 32/50 [00:10<00:03, 5.54it/s]
66%|βββββββ | 33/50 [00:10<00:03, 5.61it/s]
68%|βββββββ | 34/50 [00:10<00:02, 5.70it/s]
70%|βββββββ | 35/50 [00:10<00:02, 5.84it/s]
72%|ββββββββ | 36/50 [00:10<00:02, 5.9 2.40it/s]
40%|ββββ | 20/50 [00:08<00:10, 2.87it/s]
42%|βββββ | 21/50 [00:08<00:08, 3.35it/s]
44%|βββββ | 22/50 [00:08<00:07, 3.82it/s]
46%|βββββ | 23/50 [00:08<00:06, 4.25it/s]
48%|βββββ | 24/50 [00:08<00:05, 4.58it/s]
50%|βββββ | 25/50 [00:09<00:06, 3.85it/s]
52%|ββββββ | 26/50 [00:09<00:05, 4.28it/s]
54%|ββββββ | 27/50 [00:09<00:04, 4.67it/s]
56%|ββββββ | 28/50 [00:09<00:04, 4.98it/s]
58%|ββββββ | 29/50 [00:10<00:04, 5.18it/s]
60%|ββββββ | 30/50 [00:10<00:03, 5.29it/s]
62%|βββββββ | 31/50 [00:10<00:03, 5.35it/s]
64%|βββββββ | 32/50 [00:10<00:03, 5.46it/s]
66%|βββββββ | 33/50 [00:10<00:03, 5.61it/s]
68%|βββββββ | 34/50 [00:10<00:02, 5.77it/s]
70%|βββββββ | 35/50 [00:11<00:02, 5.89it/s]
72%|ββββββββ | 36/50 [00:11<00:03, 4.5 2.61it/s]
40%|ββββ | 20/50 [00:08<00:09, 3.15it/s]
42%|βββββ | 21/50 [00:08<00:07, 3.70it/s]
44%|βββββ | 22/50 [00:08<00:06, 4.14it/s]
46%|βββββ | 23/50 [00:08<00:06, 4.27it/s]
48%|βββββ | 24/50 [00:09<00:06, 3.85it/s]
50%|βββββ | 25/50 [00:09<00:06, 4.10it/s]
52%|ββββββ | 26/50 [00:09<00:05, 4.53it/s]
54%|ββββββ | 27/50 [00:09<00:04, 4.92it/s]
56%|ββββββ | 28/50 [00:09<00:04, 5.24it/s]
58%|ββββββ | 29/50 [00:10<00:03, 5.41it/s]
60%|ββββββ | 30/50 [00:10<00:03, 5.47it/s]
62%|βββββββ | 31/50 [00:10<00:03, 5.48it/s]
64%|βββββββ | 32/50 [00:10<00:03, 5.55it/s]
66%|βββββββ | 33/50 [00:10<00:03, 5.60it/s]
68%|βββββββ | 34/50 [00:10<00:02, 5.65it/s]
70%|βββββββ | 35/50 [00:11<00:03, 4.30it/s]
72%|ββββββββ | 36/50 [00:11<00:03, 4.47it/s]
74%|ββββββββ | 37/50 [00:10<00:02, 6.08it/s]
76%|ββββββββ | 38/50 [00:11<00:01, 6.19it/s]
78%|ββββββββ | 39/50 [00:11<00:02, 4.54it/s]
80%|ββββββββ | 40/50 [00:11<00:02, 3.89it/s]
82%|βββββββββ | 41/50 [00:12<00:02, 3.21it/s]
84%|βββββββββ | 42/50 [00:12<00:02, 3.30it/s]
86%|βββββββββ | 43/50 [00:12<00:01, 3.61it/s]
88%|βββββββββ | 44/50 [00:12<00:01, 4.15it/s]
90%|βββββββββ | 45/50 [00:13<00:01, 4.59it/s]
92%|ββββββββββ| 46/50 [00:13<00:00, 4.95it/s]
94%|ββββββββββ| 47/50 [00:13<00:00, 3.59it/s]
96%|ββββββββββ| 48/50 [00:14<00:00, 2.81it/s]
98%|ββββββββββ| 49/50 [00:14<00:00, 2.97it/s]
100%|ββββββββββ| 50/50 [00:14<00:00, 3.50it/s]
100%|ββββββββββ| 50/50 [00:14<00:00, 3.40it/s] |
|
7it/s]
74%|ββββββββ | 37/50 [00:11<00:03, 3.94it/s]
76%|ββββββββ | 38/50 [00:12<00:03, 3.32it/s]
78%|ββββββββ | 39/50 [00:12<00:03, 3.39it/s]
80%|ββββββββ | 40/50 [00:12<00:02, 3.77it/s]
82%|βββββββββ | 41/50 [00:12<00:02, 4.26it/s]
84%|βββββββββ | 42/50 [00:12<00:01, 4.69it/s]
86%|βββββββββ | 43/50 [00:13<00:01, 5.00it/s]
88%|βββββββββ | 44/50 [00:13<00:01, 3.46it/s]
90%|βββββββββ | 45/50 [00:14<00:01, 2.55it/s]
92%|ββββββββββ| 46/50 [00:14<00:01, 2.96it/s]
94%|ββββββββββ| 47/50 [00:14<00:00, 3.48it/s]
96%|ββββββββββ| 48/50 [00:14<00:00, 4.00it/s]
98%|ββββββββββ| 49/50 [00:14<00:00, 4.50it/s]
100%|ββββββββββ| 50/50 [00:15<00:00, 4.93it/s]
100%|ββββββββββ| 50/50 [00:15<00:00, 3.30it/s] |
|
7it/s]
74%|ββββββββ | 37/50 [00:11<00:02, 4.40it/s]
76%|ββββββββ | 38/50 [00:12<00:03, 3.54it/s]
78%|ββββββββ | 39/50 [00:12<00:03, 3.56it/s]
80%|ββββββββ | 40/50 [00:12<00:02, 3.68it/s]
82%|βββββββββ | 41/50 [00:12<00:02, 4.09it/s]
84%|βββββββββ | 42/50 [00:13<00:01, 4.41it/s]
86%|βββββββββ | 43/50 [00:13<00:02, 3.22it/s]
88%|βββββββββ | 44/50 [00:14<00:02, 2.91it/s]
90%|βββββββββ | 45/50 [00:14<00:01, 2.79it/s]
92%|ββββββββββ| 46/50 [00:14<00:01, 3.31it/s]
94%|ββββββββββ| 47/50 [00:14<00:00, 3.76it/s]
96%|ββββββββββ| 48/50 [00:14<00:00, 4.26it/s]
98%|ββββββββββ| 49/50 [00:15<00:00, 4.73it/s]
100%|ββββββββββ| 50/50 [00:15<00:00, 5.06it/s]
100%|ββββββββββ| 50/50 [00:15<00:00, 3.27it/s] |
|
evaluating ObjectExistence ... |
|
Results saved to work_dirs/share_internvl/InternVL2-2B/eval_milebench/ObjectExistence/ObjectExistence_240803234647.json |
|
python eval/milebench/evaluate.py --data-dir /mnt/inspurfs/share_data/wangweiyun/share_data/long-context-benchmark/MileBench/datasets--FreedomIntelligence--MileBench/snapshots/53c7a58051ef88bacf76541d91f03f5ba2d71e7d --dataset ObjectExistence --result-dir work_dirs/share_internvl/InternVL2-2B/eval_milebench/ObjectExistence |
|
internvl: ObjectExistence: {'Accuracy': 0.815, 'image_quantity_level-Accuracy': {'Few': 0.815, 'Medium': 0, 'Many': 0}, 'image_quantity_level-Result': {'Few': [163, 200], 'Medium': [0, 0], 'Many': [0, 0]}} |
|
|