File size: 21,335 Bytes
4f6ccef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
# --------------------------------------------------------
# InternVL
# Copyright (c) 2024 OpenGVLab
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------
import warnings
from dataclasses import dataclass
from typing import Any, List, Optional, Tuple, Union
from copy import deepcopy

import torch.distributed as dist
import torch.utils.checkpoint
import torch.nn as nn
import transformers

from peft import LoraConfig, get_peft_model
from torch import nn
from torch.nn import CrossEntropyLoss
from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM,
                          LlamaTokenizer, Qwen2ForCausalLM)
from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import ModelOutput, logging
from transformers.trainer_pt_utils import LabelSmoother
IGNORE_TOKEN_ID = LabelSmoother.ignore_index

from .configuration_internvl_chat import InternVLChatConfig
from .conversation import get_conv_template
from .modeling_internlm2 import InternLM2ForCausalLM
from .modeling_holistic_embedding import (HolisticEmbedding,
                                        HolisticEmbeddingConfig)

logger = logging.get_logger(__name__)


def version_cmp(v1, v2, op='eq'):
    import operator

    from packaging import version
    op_func = getattr(operator, op)
    return op_func(version.parse(v1), version.parse(v2))


class InternVLChatModel(PreTrainedModel):
    config_class = InternVLChatConfig
    # main_input_name = 'pixel_values'
    _no_split_modules = ['InternVisionModel', 'LlamaDecoderLayer', 'InternLM2DecoderLayer',
                         'Phi3DecoderLayer', 'Qwen2DecoderLayer']
    _supports_flash_attn_2 = True

    def __init__(self, config: InternVLChatConfig, embedding_model=None, language_model=None):
        super().__init__(config)

        assert version_cmp(transformers.__version__, '4.37.0', 'ge')
        image_size = config.force_image_size or config.embedding_config.image_size
        patch_size = config.embedding_config.patch_size
        self.image_size = image_size
        self.patch_size = patch_size
        self.select_layer = config.select_layer
        self.template = config.template
        self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
        self.downsample_ratio = config.downsample_ratio
        self.ps_version = config.ps_version
        self.use_thumbnail = config.use_thumbnail

        logger.info(f'num_image_token: {self.num_image_token}')
        logger.info(f'ps_version: {self.ps_version}')
        if embedding_model is not None:
            self.embedding_model = embedding_model
        else:
            self.embedding_model = HolisticEmbedding(config.embedding_config)

        if language_model is not None:
            self.language_model = language_model
        else:
            if config.llm_config.architectures[0] == 'LlamaForCausalLM':
                self.language_model = LlamaForCausalLM(config.llm_config)
            elif config.llm_config.architectures[0] == 'InternLM2ForCausalLM':
                self.language_model = InternLM2ForCausalLM(config.llm_config)
            elif config.llm_config.architectures[0] == 'Qwen2ForCausalLM':
                self.language_model = Qwen2ForCausalLM(config.llm_config)
            else:
                raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.')

        self.img_context_token_id = None
        self.conv_template = get_conv_template(self.template)
        self.system_message = self.conv_template.system_message
        self.num_samples = 0

        if config.use_backbone_lora:
            self.wrap_backbone_lora(r=config.use_backbone_lora, lora_alpha=2 * config.use_backbone_lora)

        if config.use_llm_lora:
            self.wrap_llm_lora(r=config.use_llm_lora, lora_alpha=2 * config.use_llm_lora)

    def wrap_backbone_lora(self, r=128, lora_alpha=256, lora_dropout=0.05):
        lora_config = LoraConfig(
            r=r,
            target_modules=['attn.qkv', 'attn.proj', 'mlp.fc1', 'mlp.fc2'],
            lora_alpha=lora_alpha,
            lora_dropout=lora_dropout,
        )
        self.embedding_model = get_peft_model(self.embedding_model, lora_config)
        self.embedding_model.print_trainable_parameters()

    def wrap_llm_lora(self, r=128, lora_alpha=256, lora_dropout=0.05):
        lora_config = LoraConfig(
            r=r,
            target_modules=['self_attn.q_proj', 'self_attn.k_proj', 'self_attn.v_proj', 'self_attn.o_proj',
                            'mlp.gate_proj', 'mlp.down_proj', 'mlp.up_proj'],
            lora_alpha=lora_alpha,
            lora_dropout=lora_dropout,
            task_type='CAUSAL_LM'
        )
        self.language_model = get_peft_model(self.language_model, lora_config)
        self.language_model.enable_input_require_grads()
        self.language_model.print_trainable_parameters()

    def forward(
            self,
            pixel_values: torch.FloatTensor = None,
            input_ids: torch.LongTensor = None,
            input_embeds: Optional[torch.FloatTensor] = None,
            attention_mask: Optional[torch.Tensor] = None,
            position_ids: Optional[torch.LongTensor] = None,
            image_flags: Optional[torch.LongTensor] = None,
            past_key_values: Optional[List[torch.FloatTensor]] = None,
            labels: Optional[torch.LongTensor] = None,
            use_cache: Optional[bool] = None,
            output_attentions: Optional[bool] = None,
            output_hidden_states: Optional[bool] = None,
            return_dict: Optional[bool] = None,
            statistics: Optional[torch.LongTensor] = None,
            loss_weight: Optional[List] = None,
            loss_reduction_all_gather: Optional[bool] = False,
            query = None,
            hd_input_ids = None,
            hd_attention_mask = None,
            hd_position_ids = None,
            hd_input_embeds = None,
            hd_labels = None,
            hd_loss_weight = None,
    ) -> Union[Tuple, CausalLMOutputWithPast]:

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if input_embeds is None:
            if image_flags is not None:
                image_flags = image_flags.squeeze(-1)
                pixel_values = pixel_values[image_flags == 1]
            if getattr(self.embedding_model.config, 'pixel_shuffle_loc', None) in ['post']:
                assert hd_input_ids is not None, 'hd_input_ids is required for pixel_shuffle_loc=post'
                embedding_input_ids = hd_input_ids
                embedding_attention_mask = hd_attention_mask
                embedding_position_ids = hd_position_ids
            else:
                embedding_input_ids = input_ids
                embedding_attention_mask = attention_mask
                embedding_position_ids = position_ids
            image_embeds, input_embeds, next_past_key_values = self.embedding_model(input_ids=embedding_input_ids,
                                                                                    pixel_values=pixel_values,
                                                                                    attention_mask=embedding_attention_mask,
                                                                                    position_ids=embedding_position_ids,
                                                                                    use_cache=use_cache,)

            B, N = embedding_input_ids.shape
            image_batch_size = pixel_values.shape[0] if pixel_values is not None else 0
            C = image_embeds.shape[-1]
            input_embeds = input_embeds.reshape(B * N, C)

            if torch.distributed.is_initialized() and torch.distributed.get_rank() == 0:
                print(f'dynamic ViT batch size: {image_batch_size}, images per sample: {image_batch_size / B}, dynamic token length: {N}')
                if statistics is not None:
                    num_samples, num_padding_tokens, num_padding_images = statistics.tolist()
                    self.num_samples += num_samples
                    print(f'total_samples={self.num_samples}, {num_samples=}, {num_padding_tokens=}, {num_padding_images=}')

            if image_batch_size != 0:
                if getattr(self.embedding_model.config, 'pixel_shuffle_loc', None) == 'post':
                    B, N = input_ids.shape
                    llm_input_embeds = torch.zeros(input_ids.shape[1], C, device=input_ids.device, dtype=input_embeds.dtype)
                    llm_selected = input_ids.flatten() == self.img_context_token_id
                    hd_llm_selected = hd_input_ids.flatten() == self.img_context_token_id
                    llm_input_embeds[~llm_selected] = input_embeds[~hd_llm_selected]
                    llm_input_embeds[llm_selected] = image_embeds.reshape(-1, C)
                    input_embeds = llm_input_embeds

            input_embeds = input_embeds.reshape(B, N, C)
        
        else:
            next_past_key_values = []
            if getattr(self.embedding_model.config, 'pixel_shuffle_loc', None) in ['post']:
                embedding_input_embeds = hd_input_embeds
                embedding_attention_mask = hd_attention_mask
                embedding_position_ids = hd_position_ids
            else:
                embedding_input_embeds = input_embeds
                embedding_attention_mask = attention_mask
                embedding_position_ids = position_ids
            for layer_idx, layer_module in enumerate(self.embedding_model.encoder):
                outputs = layer_module(
                    hidden_states=embedding_input_embeds,
                    attention_mask=embedding_attention_mask,
                    position_ids=embedding_position_ids,
                    past_key_value=past_key_values[layer_idx],
                    use_cache=use_cache,
                )
                embedding_input_embeds = outputs[0]
                if use_cache:
                    next_past_key_values.append(outputs[1])

            input_embeds = embedding_input_embeds

        if self.config.normalize_encoder_output:
            input_embeds = input_embeds / input_embeds.norm(dim=-1, keepdim=True)
        
        llm_attention_mask = attention_mask
        llm_position_ids = position_ids

        outputs = self.language_model(
            inputs_embeds=input_embeds,
            attention_mask=llm_attention_mask,
            position_ids=llm_position_ids,
            past_key_values=past_key_values[layer_idx+1:] if past_key_values is not None else None,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        logits = outputs.logits

        loss = None
        if labels is not None and loss_weight is not None:
            loss_weight = torch.tensor(loss_weight, dtype=torch.float32, device=labels.device)
            # Shift so that tokens < n predict n
            shift_logits = logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            shift_weights = loss_weight[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = CrossEntropyLoss(reduction='none')
            shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
            shift_labels = shift_labels.view(-1)
            shift_weights = shift_weights.view(-1)
            # Enable model parallelism
            shift_labels = shift_labels.to(shift_logits.device)
            shift_weights = shift_weights.to(shift_logits.device)
            loss = loss_fct(shift_logits, shift_labels)

            shift_weights_sum = shift_weights.sum()
            if loss_reduction_all_gather:
                dist.all_reduce(shift_weights_sum, op=dist.ReduceOp.AVG)

            loss = loss * shift_weights
            loss = loss.sum() / shift_weights_sum
        elif labels is not None:
            # Shift so that tokens < n predict n
            shift_logits = logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = CrossEntropyLoss()
            shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
            shift_labels = shift_labels.view(-1)
            # Enable model parallelism
            shift_labels = shift_labels.to(shift_logits.device)
            loss = loss_fct(shift_logits, shift_labels)

        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        if use_cache:
            for past_key_value in outputs.past_key_values:
                next_past_key_values.append(past_key_value)
        else:
            next_past_key_values = None

        return CausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=next_past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

    def batch_chat(self, tokenizer, pixel_values, questions, generation_config, num_patches_list=None,
                   history=None, return_history=False, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>',
                   IMG_CONTEXT_TOKEN='<IMG_CONTEXT>', verbose=False, image_counts=None):
        if history is not None or return_history:
            print('Now multi-turn chat is not supported in batch_chat.')
            raise NotImplementedError

        if image_counts is not None:
            num_patches_list = image_counts
            print('Warning: `image_counts` is deprecated. Please use `num_patches_list` instead.')

        img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
        self.img_context_token_id = img_context_token_id

        if verbose and pixel_values is not None:
            image_bs = pixel_values.shape[0]
            print(f'dynamic ViT batch size: {image_bs}')

        queries = []
        for idx, num_patches in enumerate(num_patches_list):
            question = questions[idx]
            if pixel_values is not None and '<image>' not in question:
                question = '<image>\n' + question
            template = get_conv_template(self.template)
            template.append_message(template.roles[0], question)
            template.append_message(template.roles[1], None)
            query = template.get_prompt()

            image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
            query = query.replace('<image>', image_tokens, 1)
            queries.append(query)

        tokenizer.padding_side = 'left'
        model_inputs = tokenizer(queries, return_tensors='pt', padding=True)
        input_ids = model_inputs['input_ids'].cuda()
        attention_mask = model_inputs['attention_mask'].cuda()
        eos_token_id = tokenizer.convert_tokens_to_ids(template.sep)
        generation_config['eos_token_id'] = eos_token_id
        generation_output = self.generate(
            pixel_values=pixel_values,
            input_ids=input_ids,
            attention_mask=attention_mask,
            **generation_config
        )
        responses = tokenizer.batch_decode(generation_output, skip_special_tokens=True)
        responses = [response.split(template.sep)[0].strip() for response in responses]
        return responses

    def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False,
             num_patches_list=None, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>',
             verbose=False):

        if history is None and pixel_values is not None and '<image>' not in question:
            question = '<image>\n' + question

        if num_patches_list is None:
            num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else []
        assert pixel_values is None or len(pixel_values) == sum(num_patches_list)

        img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
        self.img_context_token_id = img_context_token_id

        template = get_conv_template(self.template)
        template.system_message = self.system_message
        eos_token_id = tokenizer.convert_tokens_to_ids(template.sep)

        history = [] if history is None else history
        for (old_question, old_answer) in history:
            template.append_message(template.roles[0], old_question)
            template.append_message(template.roles[1], old_answer)
        template.append_message(template.roles[0], question)
        template.append_message(template.roles[1], None)
        query = template.get_prompt()

        if verbose and pixel_values is not None:
            image_bs = pixel_values.shape[0]
            print(f'dynamic ViT batch size: {image_bs}')

        hd_query = deepcopy(query)
        for num_patches in num_patches_list:
            image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
            hd_image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * int(self.num_image_token // self.downsample_ratio**2) * num_patches + IMG_END_TOKEN
            query = query.replace('<image>', image_tokens, 1)
            hd_query = hd_query.replace('<image>', hd_image_tokens, 1)

        model_inputs = tokenizer(query, return_tensors='pt')
        hd_model_inputs = tokenizer(hd_query, return_tensors='pt')
        input_ids = model_inputs['input_ids'].cuda()
        attention_mask = model_inputs['attention_mask'].cuda()
        hd_input_ids = hd_model_inputs['input_ids'].cuda()
        hd_attention_mask = hd_model_inputs['attention_mask'].cuda()

        generation_config['eos_token_id'] = eos_token_id
        generation_output = super().generate(
            pixel_values=pixel_values,
            input_ids=input_ids,
            attention_mask=attention_mask,
            hd_input_ids=hd_input_ids,
            hd_attention_mask=hd_attention_mask,
            **generation_config
        )
        generation_output = generation_output[:, input_ids.shape[1]:]

        response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
        response = response.split(template.sep)[0].strip()
        history.append((question, response))
        if return_history:
            return response, history
        else:
            query_to_print = query.replace(IMG_CONTEXT_TOKEN, '')
            query_to_print = query_to_print.replace(f'{IMG_START_TOKEN}{IMG_END_TOKEN}', '<image>')
            if verbose:
                print(query_to_print, response)
            return response

    def prepare_inputs_for_generation(
            self, input_ids, past_key_values=None, attention_mask=None, input_embeds=None, 
            tile_pos_offsets=None, hd_input_ids=None, hd_attention_mask=None, img_mask=None, **kwargs
    ):
        if past_key_values is not None:
            past_length = past_key_values[-1][0].shape[2]

            # Some generation methods already pass only the last input ID
            if input_ids.shape[1] > past_length:
                remove_prefix_length = past_length
            else:
                # Default to old behavior: keep only final ID
                remove_prefix_length = input_ids.shape[1] - 1

            input_ids = input_ids[:, remove_prefix_length:]
            input_embeds = self.embedding_model.get_input_embeddings(input_ids)
            hd_input_ids = input_ids
            hd_input_embeds = input_embeds

        position_ids = kwargs.get('position_ids', None)
        if attention_mask is not None and position_ids is None:
            # create position_ids on the fly for batch generation
            position_ids = attention_mask.long().cumsum(-1) - 1
            position_ids.masked_fill_(attention_mask == 0, 1)
            if past_key_values:
                position_ids = position_ids[:, -input_ids.shape[1]:]

        hd_position_ids = kwargs.get('hd_position_ids', None)
        if hd_attention_mask is not None and hd_position_ids is None:
            # create position_ids on the fly for batch generation
            hd_position_ids = hd_attention_mask.long().cumsum(-1) - 1
            hd_position_ids.masked_fill_(hd_attention_mask == 0, 1)
            if past_key_values:
                hd_position_ids = hd_position_ids[:, -hd_input_ids.shape[1]:]

        if input_embeds is not None:
            model_inputs = {'input_embeds': input_embeds, 'hd_input_embeds': hd_input_embeds}
        else:
            model_inputs = {'input_ids': input_ids, 'pixel_values': kwargs.get('pixel_values'), 'hd_input_ids': hd_input_ids}

        model_inputs.update(
            {
                'position_ids': position_ids,
                'past_key_values': past_key_values,
                'use_cache': kwargs.get('use_cache'),
                'attention_mask': attention_mask,
                'hd_position_ids': hd_position_ids,
                'hd_attention_mask': hd_attention_mask,
            }
        )
        return model_inputs