Upload folder using huggingface_hub
Browse files- Evaluation.txt +1632 -0
- config.json +31 -0
- generation_config.json +6 -0
- model-00001-of-00003.safetensors +3 -0
- model-00002-of-00003.safetensors +3 -0
- model-00003-of-00003.safetensors +3 -0
- model.safetensors.index.json +298 -0
- special_tokens_map.json +23 -0
- tokenizer.json +0 -0
- tokenizer_config.json +32 -0
Evaluation.txt
ADDED
@@ -0,0 +1,1632 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Question: 写一段Python程序。
|
2 |
+
写一个程序,打印数字1到100。但是当数字可以被3整除时,打印“Cat”;当数字可以被5整除时,打印“Dog”。如果可以同时被3和5整除,则打印“Panda”。
|
3 |
+
Answer: 下面是一个简单的 Python 程序,它会打印数字 1 到 100,并且根据数字是否能被 3 或 5 整除来打印相应的字符串:
|
4 |
+
|
5 |
+
```python
|
6 |
+
for i in range(1, 101):
|
7 |
+
if i % 3 == 0 and i % 5 == 0:
|
8 |
+
print("Panda")
|
9 |
+
elif i % 3 == 0:
|
10 |
+
print("Cat")
|
11 |
+
elif i % 5 == 0:
|
12 |
+
print("Dog")
|
13 |
+
else:
|
14 |
+
print(i)
|
15 |
+
```
|
16 |
+
|
17 |
+
这段代码使用了一个 for 循环来遍历从 1 到 100 的数字。对于每个数字,它首先检查它是否同时能被 3 和 5 整除(即`i % 3 == 0 and i % 5 == 0`),如果是,则打印"Panda"。然后,它检查它是否能被 3 整除(即`i % 3 == 0`),如果是,则打印"Cat"。接着,它检查它是否能被 5 整除(即`i % 5 == 0`),如果是,则打印"Dog"。如果以上条件都不满足,则打印数字本身。
|
18 |
+
|
19 |
+
================================================================================
|
20 |
+
Question: 写一段Python程序。
|
21 |
+
编写一个函数,接受一个字符串,然后返回倒序的字符串。
|
22 |
+
Answer: 当然可以,下面是一个简单的 Python 函数,它接受一个字符串作为输入,并返回其倒序的字符串:
|
23 |
+
|
24 |
+
```python
|
25 |
+
def reverse_string(s):
|
26 |
+
return s[::-1]
|
27 |
+
|
28 |
+
# 测试函数
|
29 |
+
input_str = "Hello, World!"
|
30 |
+
reversed_str = reverse_string(input_str)
|
31 |
+
print(reversed_str) # 输出: !dlroW ,olleH
|
32 |
+
```
|
33 |
+
|
34 |
+
在这个函数中,`s[::-1]`是一个切片操作,它从字符串的末尾开始,以 -1 为步长(即逆序),直到字符串的开头。这样就可以得到原字符串的倒序版本。
|
35 |
+
|
36 |
+
================================================================================
|
37 |
+
Question: 写一段Python程序。
|
38 |
+
给你一颗二叉树的根节点,写一个函数检查这棵树是否对称。这里的对称是指:如果将这棵树沿着中轴线从上往下切开,两侧得到的二叉树在结构上完全一样,但是节点的值完全相反(比如,一侧节点的值为4,另一侧对应位置的节点值为-4)。
|
39 |
+
Answer: 要编写一个函数来检查二叉树是否对称,我们可以使用递归的方法。对于每个节点,我们需要检查其左子树和右子树是否相互对称。具体来说,我们需要比较左子树的左节点和右子树的右节点,以及左子树的右节点和右子树的左节点。
|
40 |
+
|
41 |
+
以下是一个简单的 Python 程序,用于检查二叉树是否对称:
|
42 |
+
|
43 |
+
```python
|
44 |
+
class TreeNode:
|
45 |
+
def __init__(self, val=0, left=None, right=None):
|
46 |
+
self.val = val
|
47 |
+
self.left = left
|
48 |
+
self.right = right
|
49 |
+
|
50 |
+
def isSymmetric(root: TreeNode) -> bool:
|
51 |
+
def isMirror(t1: TreeNode, t2: TreeNode) -> bool:
|
52 |
+
if t1 is None and t2 is None:
|
53 |
+
return True
|
54 |
+
if t1 is None or t2 is None:
|
55 |
+
return False
|
56 |
+
return (t1.val == t2.val) and isMirror(t1.left, t2.right) and isMirror(t1.right, t2.left)
|
57 |
+
|
58 |
+
return isMirror(root, root)
|
59 |
+
|
60 |
+
# 示例使用
|
61 |
+
# 构建一棵对称的二叉树
|
62 |
+
# 1
|
63 |
+
# / \
|
64 |
+
# 2 2
|
65 |
+
# / \ / \
|
66 |
+
# 3 4 4 3
|
67 |
+
root = TreeNode(1)
|
68 |
+
root.left = TreeNode(2)
|
69 |
+
root.right = TreeNode(2)
|
70 |
+
root.left.left = TreeNode(3)
|
71 |
+
root.left.right = TreeNode(4)
|
72 |
+
root.right.left = TreeNode(4)
|
73 |
+
root.right.right = TreeNode(3)
|
74 |
+
|
75 |
+
print(isSymmetric(root)) # 应该输出 True
|
76 |
+
```
|
77 |
+
|
78 |
+
在这个程序中,`isSymmetric` 函数首先定义了一个内部函数 `isMirror`,它递归地比较两个树的节点。如果两个树的节点值相等,并且它们的子树也是镜像对称的,那么这棵树就是对称的。
|
79 |
+
|
80 |
+
`isSymmetric` 函数调用 `isMirror` 函数,并传入根节点作为参数。由于对称二叉树的左右子树是镜像对称的,所以我们只需要比较根节点的左右子树即可。
|
81 |
+
|
82 |
+
请注意,这个程序假设 `TreeNode` 类已经定义好了,并且 `TreeNode` 类有 `val`, `left`, 和 `right` 属性。如果你的环境中没有这个类,你需要先定义它。
|
83 |
+
|
84 |
+
================================================================================
|
85 |
+
Question: 写一段Python程序。
|
86 |
+
用websocket,设计并实现一个多人在线版扫雷游戏。需要考虑的功能包括如何生成游戏板,玩家如何交互以及如何判断游戏结束等。
|
87 |
+
Answer: 要使用 WebSocket 设计并实现一个多人在线版扫雷游戏,你需要使用 Python 的`websockets`库来处理 WebSocket 通信,以及`asyncio`库来处理异步事件循环。以下是一个简化版的多人在线扫雷游戏的示例代码:
|
88 |
+
|
89 |
+
首先,你需要安装`websockets`库(如果尚未安装):
|
90 |
+
|
91 |
+
```bash
|
92 |
+
pip install websockets
|
93 |
+
```
|
94 |
+
|
95 |
+
然后,你可以创建一个简单的扫雷游戏服务器,如下所示:
|
96 |
+
|
97 |
+
```python
|
98 |
+
import asyncio
|
99 |
+
import random
|
100 |
+
import websockets
|
101 |
+
import json
|
102 |
+
|
103 |
+
# 游戏参数
|
104 |
+
BOARD_SIZE = 10
|
105 |
+
MINES_COUNT = 10
|
106 |
+
|
107 |
+
# 生成游戏板
|
108 |
+
def generate_board(size, mines_count):
|
109 |
+
board = [[0 for _ in range(size)] for _ in range(size)]
|
110 |
+
mines = random.sample(range(size * size), mines_count)
|
111 |
+
for mine in mines:
|
112 |
+
board[mine // size][mine % size] = -1
|
113 |
+
return board
|
114 |
+
|
115 |
+
# 计算周围雷的数量
|
116 |
+
def count_mines(board, x, y):
|
117 |
+
count = 0
|
118 |
+
for i in range(max(0, x - 1), min(x + 2, len(board))):
|
119 |
+
for j in range(max(0, y - 1), min(y + 2, len(board[0]))):
|
120 |
+
if board[i][j] == -1:
|
121 |
+
count += 1
|
122 |
+
return count
|
123 |
+
|
124 |
+
# 初始化游戏
|
125 |
+
def initialize_game(board):
|
126 |
+
for i in range(len(board)):
|
127 |
+
for j in range(len(board[0])):
|
128 |
+
if board[i][j] != -1:
|
129 |
+
board[i][j] = count_mines(board, i, j)
|
130 |
+
return board
|
131 |
+
|
132 |
+
# 检查游戏是否结束
|
133 |
+
def check_game_over(board, revealed):
|
134 |
+
for i in range(len(board)):
|
135 |
+
for j in range(len(board[0])):
|
136 |
+
if board[i][j] == -1 and not revealed[i][j]:
|
137 |
+
return False
|
138 |
+
return True
|
139 |
+
|
140 |
+
# 处理客户端消息
|
141 |
+
async def handle_message(websocket, path):
|
142 |
+
# 初始化游戏
|
143 |
+
board = generate_board(BOARD_SIZE, MINES_COUNT)
|
144 |
+
revealed = [[False for _ in range(BOARD_SIZE)] for _ in range(BOARD_SIZE)]
|
145 |
+
board = initialize_game(board)
|
146 |
+
|
147 |
+
# 发送初始游戏状态
|
148 |
+
await websocket.send(json.dumps({'board': board, 'revealed': revealed}))
|
149 |
+
|
150 |
+
while True:
|
151 |
+
try:
|
152 |
+
# 接收客户端消息
|
153 |
+
message = await websocket.recv()
|
154 |
+
data = json.loads(message)
|
155 |
+
|
156 |
+
# 处理玩家点击
|
157 |
+
x, y = data['x'], data['y']
|
158 |
+
if board[x][y] == -1:
|
159 |
+
# 玩家触雷,游戏结束
|
160 |
+
revealed[x][y] = True
|
161 |
+
await websocket.send(json.dumps({'game_over': True, 'board': board, 'revealed': revealed}))
|
162 |
+
break
|
163 |
+
else:
|
164 |
+
# 玩家点击非雷,更新显示
|
165 |
+
revealed[x][y] = True
|
166 |
+
if board[x][y] == 0:
|
167 |
+
# 如果周围没有雷,递归揭示周围的空格
|
168 |
+
for i in range(max(0, x - 1), min(x + 2, len(board))):
|
169 |
+
for j in range(max(0, y - 1), min(y + 2, len(board[0]))):
|
170 |
+
if not revealed[i][j]:
|
171 |
+
revealed[i][j] = True
|
172 |
+
await websocket.send(json.dumps({'board': board, 'revealed': revealed}))
|
173 |
+
|
174 |
+
# 检查游戏是否结束
|
175 |
+
if check_game_over(board, revealed):
|
176 |
+
await websocket.send(json.dumps({'game_over': True, 'board': board, 'revealed': revealed}))
|
177 |
+
break
|
178 |
+
|
179 |
+
# 发送更新后的游戏状态
|
180 |
+
await websocket.send(json.dumps({'board': board, 'revealed': revealed}))
|
181 |
+
|
182 |
+
except websockets.ConnectionClosed:
|
183 |
+
break
|
184 |
+
|
185 |
+
# 启动 WebSocket 服务器
|
186 |
+
start_server = websockets.serve(handle_message, "localhost", 8765)
|
187 |
+
|
188 |
+
asyncio.get_event_loop().run_until_complete(start_server)
|
189 |
+
asyncio.get_event_loop().run_forever()
|
190 |
+
```
|
191 |
+
|
192 |
+
这段代码定义了一个简单的扫雷游戏服务器,它使用 WebSocket 协议与客户端通信。服务器生成一个随机的扫雷游戏板,并初始化游戏。当客户端发送一个点击事件时,服务器会更新游戏状态,并将更新后的状态发送回客户端。如果玩家触雷,游戏结束;如果玩家点击到一个空格且周围没有雷,服务器会递归揭示周围的空格。
|
193 |
+
|
194 |
+
请注意,这个示例代码非常基础,没有实现复杂的错误处理、用户认证或持久化存储。在实际应用中,你可能需要添加更多的功能和安全性考虑。此外,为了使游戏更加友好,你可能还需要在客户端实现一个用户界面。
|
195 |
+
|
196 |
+
================================================================================
|
197 |
+
Question: 使用 JavaScript、HTML 和 CSS 创建一个简单的计算器,支持基本的加减乘除运算。
|
198 |
+
Answer: 要创建一个简单的计算器,你可以使用 HTML 来构建用户界面,CSS 来美化界面,以及 JavaScript 来处理用户输入和执行计算。下面是一个基本的示例代码:
|
199 |
+
|
200 |
+
HTML:
|
201 |
+
```html
|
202 |
+
<!DOCTYPE html>
|
203 |
+
<html lang="en">
|
204 |
+
<head>
|
205 |
+
<meta charset="UTF-8">
|
206 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
207 |
+
<title>简单计算器</title>
|
208 |
+
<link rel="stylesheet" href="styles.css">
|
209 |
+
</head>
|
210 |
+
<body>
|
211 |
+
<div class="calculator">
|
212 |
+
<input type="text" id="display" disabled>
|
213 |
+
<button onclick="appendNumber('7')">7</button>
|
214 |
+
<button onclick="appendNumber('8')">8</button>
|
215 |
+
<button onclick="appendNumber('9')">9</button>
|
216 |
+
<button onclick="appendOperator('/')">/</button>
|
217 |
+
<button onclick="appendNumber('4')">4</button>
|
218 |
+
<button onclick="appendNumber('5')">5</button>
|
219 |
+
<button onclick="appendNumber('6')">6</button>
|
220 |
+
<button onclick="appendOperator('*')">*</button>
|
221 |
+
<button onclick="appendNumber('1')">1</button>
|
222 |
+
<button onclick="appendNumber('2')">2</button>
|
223 |
+
<button onclick="appendNumber('3')">3</button>
|
224 |
+
<button onclick="appendOperator('-')">-</button>
|
225 |
+
<button onclick="appendNumber('0')">0</button>
|
226 |
+
<button onclick="appendDecimal()">.</button>
|
227 |
+
<button onclick="calculate()">=</button>
|
228 |
+
<button onclick="appendOperator('+')">+</button>
|
229 |
+
<button onclick="clearDisplay()">C</button>
|
230 |
+
</div>
|
231 |
+
<script src="script.js"></script>
|
232 |
+
</body>
|
233 |
+
</html>
|
234 |
+
```
|
235 |
+
|
236 |
+
CSS (styles.css):
|
237 |
+
```css
|
238 |
+
body {
|
239 |
+
font-family: Arial, sans-serif;
|
240 |
+
}
|
241 |
+
|
242 |
+
.calculator {
|
243 |
+
width: 200px;
|
244 |
+
margin: 50px auto;
|
245 |
+
padding: 10px;
|
246 |
+
border: 1px solid #ccc;
|
247 |
+
border-radius: 5px;
|
248 |
+
background-color: #f2f2f2;
|
249 |
+
}
|
250 |
+
|
251 |
+
#display {
|
252 |
+
width: 100%;
|
253 |
+
margin-bottom: 10px;
|
254 |
+
padding: 5px;
|
255 |
+
text-align: right;
|
256 |
+
font-size: 18px;
|
257 |
+
border: none;
|
258 |
+
background-color: #fff;
|
259 |
+
}
|
260 |
+
|
261 |
+
button {
|
262 |
+
width: 50px;
|
263 |
+
height: 50px;
|
264 |
+
margin: 5px;
|
265 |
+
font-size: 18px;
|
266 |
+
border: none;
|
267 |
+
border-radius: 5px;
|
268 |
+
background-color: #e0e0e0;
|
269 |
+
cursor: pointer;
|
270 |
+
}
|
271 |
+
|
272 |
+
button:hover {
|
273 |
+
background-color: #d0d0d0;
|
274 |
+
}
|
275 |
+
|
276 |
+
button:active {
|
277 |
+
background-color: #c0c0c0;
|
278 |
+
}
|
279 |
+
```
|
280 |
+
|
281 |
+
JavaScript (script.js):
|
282 |
+
```javascript
|
283 |
+
let display = document.getElementById('display');
|
284 |
+
let currentValue = '';
|
285 |
+
let operator = '';
|
286 |
+
let previousValue = '';
|
287 |
+
|
288 |
+
function appendNumber(number) {
|
289 |
+
currentValue += number;
|
290 |
+
display.value = currentValue;
|
291 |
+
}
|
292 |
+
|
293 |
+
function appendDecimal() {
|
294 |
+
if (!currentValue.includes('.')) {
|
295 |
+
currentValue += '.';
|
296 |
+
display.value = currentValue;
|
297 |
+
}
|
298 |
+
}
|
299 |
+
|
300 |
+
function appendOperator(op) {
|
301 |
+
if (currentValue) {
|
302 |
+
if (previousValue) {
|
303 |
+
calculate();
|
304 |
+
}
|
305 |
+
operator = op;
|
306 |
+
previousValue = currentValue;
|
307 |
+
currentValue = '';
|
308 |
+
}
|
309 |
+
}
|
310 |
+
|
311 |
+
function calculate() {
|
312 |
+
let result;
|
313 |
+
const previous = parseFloat(previousValue);
|
314 |
+
const current = parseFloat(currentValue);
|
315 |
+
if (isNaN(previous) || isNaN(current)) return;
|
316 |
+
switch (operator) {
|
317 |
+
case '+':
|
318 |
+
result = previous + current;
|
319 |
+
break;
|
320 |
+
case '-':
|
321 |
+
result = previous - current;
|
322 |
+
break;
|
323 |
+
case '*':
|
324 |
+
result = previous * current;
|
325 |
+
break;
|
326 |
+
case '/':
|
327 |
+
result = previous / current;
|
328 |
+
break;
|
329 |
+
default:
|
330 |
+
return;
|
331 |
+
}
|
332 |
+
currentValue = result.toString();
|
333 |
+
operator = '';
|
334 |
+
previousValue = '';
|
335 |
+
display.value = currentValue;
|
336 |
+
}
|
337 |
+
|
338 |
+
function clearDisplay() {
|
339 |
+
currentValue = '';
|
340 |
+
operator = '';
|
341 |
+
previousValue = '';
|
342 |
+
display.value = '0';
|
343 |
+
}
|
344 |
+
```
|
345 |
+
|
346 |
+
这个计算器支持基本的加减乘除运算,并且可以处理小数点。用户可以通过点击按钮输入数字和操作符,然后点击等号(=)来得到结果。清除按钮(C)可以重置计算器。
|
347 |
+
|
348 |
+
================================================================================
|
349 |
+
Question: 利用公开的天气 API,用 Rust 创建一个可以显示当前天气信息的控制台应用。用户可以输入他们的城市名称来获取天气信息。
|
350 |
+
Answer: 要创建一个可以显示当前天气信息的控制台应用,你需要使用 Rust 语言,并且需要一个天气 API。以下是一个简单的步骤指南,帮助你完成这个任务:
|
351 |
+
|
352 |
+
1. ** 选择天气 API**:
|
353 |
+
首先,你需要选择一个天气 API。有许多免费和付费的天气 API 可供选择,例如 OpenWeatherMap、WeatherAPI 等。这些 API 通常提供 JSON 格式的天气数据,你可以通过 HTTP 请求获取。
|
354 |
+
|
355 |
+
2. ** 获取 API 密钥 **:
|
356 |
+
注册并获取一个 API 密钥,这通常是免费的,但可能需要付费的计划。
|
357 |
+
|
358 |
+
3. ** 创建 Rust 项目 **:
|
359 |
+
使用 Rust 的 Cargo 工具创建一个新的项目。打开终端或命令提示符,运行以下命令:
|
360 |
+
```
|
361 |
+
cargo new weather_app
|
362 |
+
cd weather_app
|
363 |
+
```
|
364 |
+
|
365 |
+
4. ** 添加依赖 **:
|
366 |
+
在`Cargo.toml`文件中添加 HTTP 客户端库,例如`reqwest`,以及 JSON 解析库,例如`serde`和`serde_json`。
|
367 |
+
```toml
|
368 |
+
[dependencies]
|
369 |
+
reqwest = "0.11"
|
370 |
+
serde = { version = "1", features = ["derive"] }
|
371 |
+
serde_json = "1"
|
372 |
+
```
|
373 |
+
|
374 |
+
5. ** 编写代码 **:
|
375 |
+
在`src/main.rs`中,编写代码来发送 HTTP 请求到天气 API,并解析返回的 JSON 数据。
|
376 |
+
```rust
|
377 |
+
use serde::{Deserialize, Serialize};
|
378 |
+
use reqwest;
|
379 |
+
|
380 |
+
#[derive(Debug, Deserialize)]
|
381 |
+
struct WeatherData {
|
382 |
+
// 根据 API 返回的数据结构定义结构体
|
383 |
+
// 例如:
|
384 |
+
// temperature: f64,
|
385 |
+
// description: String,
|
386 |
+
// ...
|
387 |
+
}
|
388 |
+
|
389 |
+
async fn get_weather(city: &str, api_key: &str) -> Result<WeatherData, reqwest::Error> {
|
390 |
+
let url = format!("https://api.openweathermap.org/data/2.5/weather?q={}&appid={}", city, api_key);
|
391 |
+
let response = reqwest::get(url).await?;
|
392 |
+
let weather_data: WeatherData = response.json().await?;
|
393 |
+
Ok(weather_data)
|
394 |
+
}
|
395 |
+
|
396 |
+
#[tokio::main]
|
397 |
+
async fn main() {
|
398 |
+
let city = "Beijing"; // 用户输入的城市名称
|
399 |
+
let api_key = "YOUR_API_KEY"; // 你的 API 密钥
|
400 |
+
|
401 |
+
match get_weather(city, api_key).await {
|
402 |
+
Ok(weather) => {
|
403 |
+
println!("{:?}", weather);
|
404 |
+
}
|
405 |
+
Err(e) => {
|
406 |
+
eprintln!("Error: {}", e);
|
407 |
+
}
|
408 |
+
}
|
409 |
+
}
|
410 |
+
```
|
411 |
+
|
412 |
+
6. ** 运行应用 **:
|
413 |
+
在终端或命令提示符中运行以下命令来编译并运行你的应用:
|
414 |
+
```
|
415 |
+
cargo run
|
416 |
+
```
|
417 |
+
|
418 |
+
7. ** 用户输入 **:
|
419 |
+
应用会提示用户输入城市名称,用户输入后,应用将显示该城市的天气信息。
|
420 |
+
|
421 |
+
请注意,上述代码只是一个示例,你需要根据所选天气 API 的具体返回数据结构来调整`WeatherData`结构体。此外,你可能需要处理错误情况,例如网络问题或 API 密钥无效等。
|
422 |
+
|
423 |
+
最后,请确保在使用任何 API 时遵守其使用条款和条件,并妥善保护你的 API 密钥。
|
424 |
+
|
425 |
+
================================================================================
|
426 |
+
Question: 设计一个页面,该页面有一个开关可以在两个或更多主题(例如,深色和浅色主题)之间切换。
|
427 |
+
Answer: 要设计一个具有开关功能的页面,可以使用 HTML、CSS 和 JavaScript 来实现。以下是一个简单的示例,展示了如何创建一个开关来在深色和浅色主题之间切换。
|
428 |
+
|
429 |
+
首先,我们需要创建一个 HTML 结构,其中包含一个用于切换主题的开关:
|
430 |
+
|
431 |
+
```html
|
432 |
+
<!DOCTYPE html>
|
433 |
+
<html lang="en">
|
434 |
+
<head>
|
435 |
+
<meta charset="UTF-8">
|
436 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
437 |
+
<title>主题切换页面</title>
|
438 |
+
<link rel="stylesheet" href="styles.css">
|
439 |
+
</head>
|
440 |
+
<body>
|
441 |
+
|
442 |
+
<div class="theme-switch-wrapper">
|
443 |
+
<label class="theme-switch" for="checkbox">
|
444 |
+
<input type="checkbox" id="checkbox" />
|
445 |
+
<div class="slider round"></div>
|
446 |
+
</label>
|
447 |
+
</div>
|
448 |
+
|
449 |
+
<script src="script.js"></script>
|
450 |
+
</body>
|
451 |
+
</html>
|
452 |
+
```
|
453 |
+
|
454 |
+
接下来,我们需要编写 CSS 来定义开关的样式和主题的样式:
|
455 |
+
|
456 |
+
```css
|
457 |
+
/* styles.css */
|
458 |
+
body {
|
459 |
+
font-family: Arial, sans-serif;
|
460 |
+
margin: 0;
|
461 |
+
padding: 0;
|
462 |
+
background-color: #f4f4f4; /* 浅色主题背景 */
|
463 |
+
color: #333; /* 浅色主题文字 */
|
464 |
+
}
|
465 |
+
|
466 |
+
.theme-switch-wrapper {
|
467 |
+
position: fixed;
|
468 |
+
top: 10px;
|
469 |
+
right: 10px;
|
470 |
+
}
|
471 |
+
|
472 |
+
.theme-switch {
|
473 |
+
position: relative;
|
474 |
+
display: inline-block;
|
475 |
+
width: 60px;
|
476 |
+
height: 34px;
|
477 |
+
}
|
478 |
+
|
479 |
+
.theme-switch input {
|
480 |
+
opacity: 0;
|
481 |
+
width: 0;
|
482 |
+
height: 0;
|
483 |
+
}
|
484 |
+
|
485 |
+
.slider {
|
486 |
+
position: absolute;
|
487 |
+
cursor: pointer;
|
488 |
+
top: 0;
|
489 |
+
left: 0;
|
490 |
+
right: 0;
|
491 |
+
bottom: 0;
|
492 |
+
background-color: #ccc;
|
493 |
+
-webkit-transition: .4s;
|
494 |
+
transition: .4s;
|
495 |
+
}
|
496 |
+
|
497 |
+
.slider:before {
|
498 |
+
position: absolute;
|
499 |
+
content: "";
|
500 |
+
height: 26px;
|
501 |
+
width: 26px;
|
502 |
+
left: 4px;
|
503 |
+
bottom: 4px;
|
504 |
+
background-color: white;
|
505 |
+
-webkit-transition: .4s;
|
506 |
+
transition: .4s;
|
507 |
+
}
|
508 |
+
|
509 |
+
input:checked + .slider {
|
510 |
+
background-color: #2196F3;
|
511 |
+
}
|
512 |
+
|
513 |
+
input:focus + .slider {
|
514 |
+
box-shadow: 0 0 1px #2196F3;
|
515 |
+
}
|
516 |
+
|
517 |
+
input:checked + .slider:before {
|
518 |
+
-webkit-transform: translateX(26px);
|
519 |
+
-ms-transform: translateX(26px);
|
520 |
+
transform: translateX(26px);
|
521 |
+
}
|
522 |
+
|
523 |
+
/* 深色主题样式 */
|
524 |
+
.dark-theme {
|
525 |
+
background-color: #333; /* 深色主题背景 */
|
526 |
+
color: #f4f4f4; /* 深色主题文字 */
|
527 |
+
}
|
528 |
+
|
529 |
+
/* 浅色主题样式 */
|
530 |
+
.light-theme {
|
531 |
+
background-color: #f4f4f4; /* 浅色主题背景 */
|
532 |
+
color: #333; /* 浅色主题文字 */
|
533 |
+
}
|
534 |
+
```
|
535 |
+
|
536 |
+
最后,我们需要编写 JavaScript 来处理开关的点击事件,并根据用户的选择切换主题:
|
537 |
+
|
538 |
+
```javascript
|
539 |
+
// script.js
|
540 |
+
document.getElementById('checkbox').addEventListener('change', function() {
|
541 |
+
if(this.checked) {
|
542 |
+
document.body.classList.add('dark-theme');
|
543 |
+
document.body.classList.remove('light-theme');
|
544 |
+
} else {
|
545 |
+
document.body.classList.add('light-theme');
|
546 |
+
document.body.classList.remove('dark-theme');
|
547 |
+
}
|
548 |
+
});
|
549 |
+
```
|
550 |
+
|
551 |
+
以上代码创建了一个简单的页面,其中包含一个开关,用户可以通过点击这个开关来在深色和浅色主题之间切换。当用户点击开关时,JavaScript 会根据开关的状态添加或移除相应的类,从而改变页面的背景颜色和文字颜色。
|
552 |
+
|
553 |
+
================================================================================
|
554 |
+
Question: 使用 JavaScript、HTML 和 CSS 创建一个图片轮播效果,每隔3秒,图片自动滑动切换,同时支持用户点击导航点进行切换。
|
555 |
+
Answer: 要创建一个图片轮播效果,你可以使用 HTML、CSS 和 JavaScript。以下是一个简单的示例,展示了如何实现这个功能:
|
556 |
+
|
557 |
+
1. HTML 结构:
|
558 |
+
```html
|
559 |
+
<!DOCTYPE html>
|
560 |
+
<html lang="en">
|
561 |
+
<head>
|
562 |
+
<meta charset="UTF-8">
|
563 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
564 |
+
<title>图片轮播</title>
|
565 |
+
<link rel="stylesheet" href="styles.css">
|
566 |
+
</head>
|
567 |
+
<body>
|
568 |
+
|
569 |
+
<div class="slider">
|
570 |
+
<div class="slides">
|
571 |
+
<div class="slide"><img src="image1.jpg" alt="Image 1"></div>
|
572 |
+
<div class="slide"><img src="image2.jpg" alt="Image 2"></div>
|
573 |
+
<div class="slide"><img src="image3.jpg" alt="Image 3"></div>
|
574 |
+
<!-- 更多图片 -->
|
575 |
+
</div>
|
576 |
+
<div class="navigation">
|
577 |
+
<span class="dot active" onclick="currentSlide(1)"></span>
|
578 |
+
<span class="dot" onclick="currentSlide(2)"></span>
|
579 |
+
<span class="dot" onclick="currentSlide(3)"></span>
|
580 |
+
<!-- 更多导航点 -->
|
581 |
+
</div>
|
582 |
+
</div>
|
583 |
+
|
584 |
+
<script src="script.js"></script>
|
585 |
+
</body>
|
586 |
+
</html>
|
587 |
+
```
|
588 |
+
|
589 |
+
2. CSS 样式:
|
590 |
+
```css
|
591 |
+
/* styles.css */
|
592 |
+
.slider {
|
593 |
+
position: relative;
|
594 |
+
width: 100%;
|
595 |
+
max-width: 600px;
|
596 |
+
margin: auto;
|
597 |
+
overflow: hidden;
|
598 |
+
}
|
599 |
+
|
600 |
+
.slides {
|
601 |
+
display: flex;
|
602 |
+
transition: transform 0.5s ease;
|
603 |
+
}
|
604 |
+
|
605 |
+
.slide {
|
606 |
+
min-width: 100%;
|
607 |
+
transition: opacity 0.5s ease;
|
608 |
+
}
|
609 |
+
|
610 |
+
.slide img {
|
611 |
+
width: 100%;
|
612 |
+
display: block;
|
613 |
+
}
|
614 |
+
|
615 |
+
.navigation {
|
616 |
+
position: absolute;
|
617 |
+
bottom: 10px;
|
618 |
+
left: 50%;
|
619 |
+
transform: translateX(-50%);
|
620 |
+
}
|
621 |
+
|
622 |
+
.dot {
|
623 |
+
cursor: pointer;
|
624 |
+
height: 15px;
|
625 |
+
width: 15px;
|
626 |
+
margin: 0 5px;
|
627 |
+
background-color: #bbb;
|
628 |
+
border-radius: 50%;
|
629 |
+
display: inline-block;
|
630 |
+
transition: background-color 0.6s ease;
|
631 |
+
}
|
632 |
+
|
633 |
+
.active, .dot:hover {
|
634 |
+
background-color: #717171;
|
635 |
+
}
|
636 |
+
```
|
637 |
+
|
638 |
+
3. JavaScript 逻辑:
|
639 |
+
```javascript
|
640 |
+
// script.js
|
641 |
+
let slideIndex = 0;
|
642 |
+
const slides = document.querySelectorAll('.slide');
|
643 |
+
const dots = document.querySelectorAll('.dot');
|
644 |
+
|
645 |
+
function showSlides() {
|
646 |
+
for (let i = 0; i < slides.length; i++) {
|
647 |
+
slides[i].style.opacity = 0;
|
648 |
+
}
|
649 |
+
slideIndex++;
|
650 |
+
if (slideIndex > slides.length) {slideIndex = 1}
|
651 |
+
for (let i = 0; i < dots.length; i++) {
|
652 |
+
dots[i].className = dots[i].className.replace(" active", "");
|
653 |
+
}
|
654 |
+
slides[slideIndex-1].style.opacity = 1;
|
655 |
+
dots[slideIndex-1].className += " active";
|
656 |
+
setTimeout(showSlides, 3000); // Change image every 3 seconds
|
657 |
+
}
|
658 |
+
|
659 |
+
function currentSlide(n) {
|
660 |
+
showSlides(slideIndex = n);
|
661 |
+
}
|
662 |
+
|
663 |
+
showSlides();
|
664 |
+
```
|
665 |
+
|
666 |
+
这个示例中,`showSlides`函数负责切换图片,每隔 3 秒自动调用一次。`currentSlide`函数允许用户点击导航点进行切换。
|
667 |
+
|
668 |
+
请注意,你需要根据自己的图片路径和需求调整 HTML 和 CSS 代码。此外,你可能需要添加更多的图片和导航点来满足你的需求。
|
669 |
+
|
670 |
+
================================================================================
|
671 |
+
Question: 创建一个表单,使用 JavaScript 对用户输入进行验证。包括:检查必填字段是否为空,检查邮箱地址格式,密码长度和强度。
|
672 |
+
Answer: 要创建一个表单并使用 JavaScript 进行验证,你可以按照以下步骤进行:
|
673 |
+
|
674 |
+
1. 创建 HTML 表单元素。
|
675 |
+
2. 使用 JavaScript 添加事件监听器来捕获用户的输入。
|
676 |
+
3. 编写函数来验证每个字段。
|
677 |
+
4. 显示验证错误消息。
|
678 |
+
|
679 |
+
下面是一个简单的示例代码,展示了如何实现这些步骤:
|
680 |
+
|
681 |
+
```html
|
682 |
+
<!DOCTYPE html>
|
683 |
+
<html lang="en">
|
684 |
+
<head>
|
685 |
+
<meta charset="UTF-8">
|
686 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
687 |
+
<title>Form Validation Example</title>
|
688 |
+
<style>
|
689 |
+
.error {
|
690 |
+
color: red;
|
691 |
+
}
|
692 |
+
</style>
|
693 |
+
</head>
|
694 |
+
<body>
|
695 |
+
|
696 |
+
<form id="myForm">
|
697 |
+
<label for="name">Name:</label>
|
698 |
+
<input type="text" id="name" name="name" required>
|
699 |
+
<span id="nameError" class="error"></span>
|
700 |
+
<br>
|
701 |
+
|
702 |
+
<label for="email">Email:</label>
|
703 |
+
<input type="email" id="email" name="email" required>
|
704 |
+
<span id="emailError" class="error"></span>
|
705 |
+
<br>
|
706 |
+
|
707 |
+
<label for="password">Password:</label>
|
708 |
+
<input type="password" id="password" name="password" required>
|
709 |
+
<span id="passwordError" class="error"></span>
|
710 |
+
<br>
|
711 |
+
|
712 |
+
<input type="submit" value="Submit">
|
713 |
+
</form>
|
714 |
+
|
715 |
+
<script>
|
716 |
+
// 获取表单和输入元素
|
717 |
+
const form = document.getElementById('myForm');
|
718 |
+
const nameInput = document.getElementById('name');
|
719 |
+
const emailInput = document.getElementById('email');
|
720 |
+
const passwordInput = document.getElementById('password');
|
721 |
+
|
722 |
+
// 获取错误消息元素
|
723 |
+
const nameError = document.getElementById('nameError');
|
724 |
+
const emailError = document.getElementById('emailError');
|
725 |
+
const passwordError = document.getElementById('passwordError');
|
726 |
+
|
727 |
+
// 验证函数
|
728 |
+
function validateForm() {
|
729 |
+
// 清除之前的错误消息
|
730 |
+
nameError.textContent = '';
|
731 |
+
emailError.textContent = '';
|
732 |
+
passwordError.textContent = '';
|
733 |
+
|
734 |
+
// 验证名称
|
735 |
+
if (nameInput.value.trim() === '') {
|
736 |
+
nameError.textContent = 'Name is required.';
|
737 |
+
return false;
|
738 |
+
}
|
739 |
+
|
740 |
+
// 验证邮箱
|
741 |
+
const emailRegex = /^[^\s@]+@[^\s@]+\.[^\s@]+$/;
|
742 |
+
if (!emailRegex.test(emailInput.value)) {
|
743 |
+
emailError.textContent = 'Invalid email address.';
|
744 |
+
return false;
|
745 |
+
}
|
746 |
+
|
747 |
+
// 验证密码
|
748 |
+
const passwordRegex = /^(?=.*[a-z])(?=.*[A-Z])(?=.*\d)[a-zA-Z\d]{8,}$/;
|
749 |
+
if (!passwordRegex.test(passwordInput.value)) {
|
750 |
+
passwordError.textContent = 'Password must be at least 8 characters long and contain at least one uppercase letter, one lowercase letter, and one number.';
|
751 |
+
return false;
|
752 |
+
}
|
753 |
+
|
754 |
+
// 如果所有验证都通过,则返回 true
|
755 |
+
return true;
|
756 |
+
}
|
757 |
+
|
758 |
+
// 监听表单提交事件
|
759 |
+
form.addEventListener('submit', function(event) {
|
760 |
+
// 阻止表单默认提交行为
|
761 |
+
event.preventDefault();
|
762 |
+
|
763 |
+
// 调用验证函数
|
764 |
+
if (validateForm()) {
|
765 |
+
// 如果验证通过,可以在这里处理表单提交
|
766 |
+
alert('Form submitted successfully!');
|
767 |
+
}
|
768 |
+
});
|
769 |
+
</script>
|
770 |
+
|
771 |
+
</body>
|
772 |
+
</html>
|
773 |
+
```
|
774 |
+
|
775 |
+
在这个示例中,我们创建了一个简单的表单,包含三个字段:姓名、电子邮件和密码。每个字段都被标记为必填(`required`),以确保在提交表单之前用户必须填写这些字段。
|
776 |
+
|
777 |
+
JavaScript 代码中定义了一个`validateForm`函数,该函数会检查每个字段是否满足特定的验证条件。如果字段为空或格式不正确,它会显示相应的错误消息。如果所有字段都通过验证,则函数返回`true`,允许表单提交。
|
778 |
+
|
779 |
+
请注意,这个示例中的密码验证正则表达式非常简单,只检查了密码长度和是否包含至少一个大写字母、一个小写字母和一个数字。在实际应用中,你可能需要一个更复杂的密码策略,包括特殊字符、避免常见的密码模式等。
|
780 |
+
|
781 |
+
================================================================================
|
782 |
+
Question: 使用 matplotlib 或 seaborn 库,对给定的海豹表演评分数据集进行可视化分析,包括绘制直方图、散点图、箱线图。
|
783 |
+
Answer: 要使用 matplotlib 或 seaborn 库对给定的海豹表演评分数据集进行可视化分析,首先需要确保你有一个包含评分数据的数据集。假设我们有一个名为`ratings.csv`的 CSV 文件,其中包含了海豹表演的评分数据,我们可以使用以下步骤来进行可视化分析:
|
784 |
+
|
785 |
+
1. 导入必要的库。
|
786 |
+
2. 加载数据集。
|
787 |
+
3. 绘制直方图。
|
788 |
+
4. 绘制散点图。
|
789 |
+
5. 绘制箱线图。
|
790 |
+
|
791 |
+
下面是一个简单的示例代码,展示如何使用 matplotlib 和 seaborn 来完成这些任务:
|
792 |
+
|
793 |
+
```python
|
794 |
+
import matplotlib.pyplot as plt
|
795 |
+
import seaborn as sns
|
796 |
+
import pandas as pd
|
797 |
+
|
798 |
+
# 加载数据集
|
799 |
+
df = pd.read_csv('ratings.csv')
|
800 |
+
|
801 |
+
# 绘制直方图
|
802 |
+
plt.figure(figsize=(10, 6))
|
803 |
+
sns.histplot(df['rating'], bins=20, kde=True)
|
804 |
+
plt.title('Distribution of Ratings')
|
805 |
+
plt.xlabel('Rating')
|
806 |
+
plt.ylabel('Frequency')
|
807 |
+
plt.show()
|
808 |
+
|
809 |
+
# 绘制散点图
|
810 |
+
plt.figure(figsize=(10, 6))
|
811 |
+
sns.scatterplot(x='performance_id', y='rating', data=df)
|
812 |
+
plt.title('Ratings by Performance ID')
|
813 |
+
plt.xlabel('Performance ID')
|
814 |
+
plt.ylabel('Rating')
|
815 |
+
plt.show()
|
816 |
+
|
817 |
+
# 绘制箱线图
|
818 |
+
plt.figure(figsize=(10, 6))
|
819 |
+
sns.boxplot(x='performance_id', y='rating', data=df)
|
820 |
+
plt.title('Boxplot of Ratings by Performance ID')
|
821 |
+
plt.xlabel('Performance ID')
|
822 |
+
plt.ylabel('Rating')
|
823 |
+
plt.show()
|
824 |
+
```
|
825 |
+
|
826 |
+
在上述代码中,我们首先导入了所需的库,然后加载了数据集。接着,我们使用`sns.histplot`函数绘制了评分的直方图,使用`sns.scatterplot`函数绘制了评分与表演 ID 之间的散点图,最后使用`sns.boxplot`函数绘制了评分与表演 ID 之间的箱线图。
|
827 |
+
|
828 |
+
请注意,你需要根据实际的数据集结构调整代码中的列名(例如,将`'rating'`和`'performance_id'`替换为你的数据集中的实际列名)。此外,`bins`参数用于指定直方图的柱子数量,`kde`参数用于添加核密度估计线,以便更清晰地展示数据的分布情况。
|
829 |
+
|
830 |
+
确保在运行代码之前已经安装了 matplotlib 和 seaborn 库,如果没有安装,可以使用 pip 进行安装:
|
831 |
+
|
832 |
+
```bash
|
833 |
+
pip install matplotlib seaborn
|
834 |
+
```
|
835 |
+
|
836 |
+
以上就是使用 matplotlib 和 seaborn 库对海豹表演评分数据集进行可视化分析的基本步骤。
|
837 |
+
|
838 |
+
================================================================================
|
839 |
+
Question: 使用 Django 库,建立一个简单的 web 服务,为游客展示海洋馆里的每只海豹的信息和表演日程。
|
840 |
+
Answer: 要使用 Django 库建立一个简单的 web 服务,为游客展示海洋馆里的每只海豹的信息和表演日程,你需要按照以下步骤进行:
|
841 |
+
|
842 |
+
1. ** 安装 Django**:
|
843 |
+
如果你还没有安装 Django,可以通过 pip 命令来安装它:
|
844 |
+
```
|
845 |
+
pip install django
|
846 |
+
```
|
847 |
+
|
848 |
+
2. ** 创建 Django 项目 **:
|
849 |
+
使用 Django 提供的命令行工具创建一个新的项目:
|
850 |
+
```
|
851 |
+
django-admin startproject my_project
|
852 |
+
```
|
853 |
+
这将创建一个名为`my_project`的新目录,其中包含了 Django 项目的基本结构。
|
854 |
+
|
855 |
+
3. ** 创建应用 **:
|
856 |
+
在项目目录中创建一个应用来处理海豹信息和表演日程:
|
857 |
+
```
|
858 |
+
python manage.py startapp my_app
|
859 |
+
```
|
860 |
+
这将创建一个名为`my_app`的新目录,其中包含了应用的模型、视图和模板。
|
861 |
+
|
862 |
+
4. ** 定义模型 **:
|
863 |
+
在`my_app/models.py`中定义海豹的模型,例如:
|
864 |
+
```python
|
865 |
+
from django.db import models
|
866 |
+
|
867 |
+
class Seal(models.Model):
|
868 |
+
name = models.CharField(max_length=100)
|
869 |
+
age = models.IntegerField()
|
870 |
+
description = models.TextField()
|
871 |
+
# 其他字段...
|
872 |
+
```
|
873 |
+
|
874 |
+
5. ** 创建数据库迁移 **:
|
875 |
+
使用 Django 的迁移系统来创建数据���表:
|
876 |
+
```
|
877 |
+
python manage.py makemigrations
|
878 |
+
python manage.py migrate
|
879 |
+
```
|
880 |
+
|
881 |
+
6. ** 创建视图 **:
|
882 |
+
在`my_app/views.py`中创建视图函数来处理请求并返回响应:
|
883 |
+
```python
|
884 |
+
from django.shortcuts import render
|
885 |
+
from .models import Seal
|
886 |
+
|
887 |
+
def seals_list(request):
|
888 |
+
seals = Seal.objects.all()
|
889 |
+
return render(request, 'seals_list.html', {'seals': seals})
|
890 |
+
```
|
891 |
+
|
892 |
+
7. ** 配置 URLs**:
|
893 |
+
在`my_project/urls.py`中配置 URL 路由:
|
894 |
+
```python
|
895 |
+
from django.urls import path
|
896 |
+
from my_app.views import seals_list
|
897 |
+
|
898 |
+
urlpatterns = [
|
899 |
+
path('seals/', seals_list, name='seals_list'),
|
900 |
+
]
|
901 |
+
```
|
902 |
+
|
903 |
+
8. ** 创建模板 **:
|
904 |
+
在`my_app/templates/`目录下创建一个 HTML 模板文件`seals_list.html`,用于显示海豹信息:
|
905 |
+
```html
|
906 |
+
<!DOCTYPE html>
|
907 |
+
<html>
|
908 |
+
<head>
|
909 |
+
<title>Seals List</title>
|
910 |
+
</head>
|
911 |
+
<body>
|
912 |
+
<h1>Seals List</h1>
|
913 |
+
<ul>
|
914 |
+
{% for seal in seals %}
|
915 |
+
<li>{{ seal.name }} - {{ seal.age }} years old</li>
|
916 |
+
{% endfor %}
|
917 |
+
</ul>
|
918 |
+
</body>
|
919 |
+
</html>
|
920 |
+
```
|
921 |
+
|
922 |
+
9. ** 运行服务器 **:
|
923 |
+
使用以下命令启动 Django 开发服务器:
|
924 |
+
```
|
925 |
+
python manage.py runserver
|
926 |
+
```
|
927 |
+
然后在浏览器中访问`http://127.0.0.1:8000/seals/`来查看海豹列表。
|
928 |
+
|
929 |
+
10. ** 添加表演日程 **:
|
930 |
+
你需要在`Seal`模型中添加一个字段来存储表演日程,例如:
|
931 |
+
```python
|
932 |
+
class Seal(models.Model):
|
933 |
+
# ... 其他字段...
|
934 |
+
schedule = models.TextField()
|
935 |
+
```
|
936 |
+
并更新数据库迁移和模板以显示表演日程。
|
937 |
+
|
938 |
+
11. ** 优化和扩展 **:
|
939 |
+
根据需要添加更多的功能,比如搜索、过滤、排序等,并确保代码质量和性能。
|
940 |
+
|
941 |
+
以上步骤提供了一个基本的框架,你可以根据实际需求进行扩展和优化。记得在开发过程中遵循 Django 的最佳实践,比如使用模型来管理数据,使用视图来处理业务逻辑,使用模板来展示数据等。
|
942 |
+
|
943 |
+
================================================================================
|
944 |
+
Question: 使用 statsmodels 库,对给定的每日海豹表演的评分数据进行分析,包括趋势、季节性、周期性等的识别和预测。
|
945 |
+
Answer: 要使用`statsmodels`库对给定的每日海豹表演评分数据进行分析,包括趋势、季节性、周期性等的识别和预测,你需要遵循以下步骤:
|
946 |
+
|
947 |
+
1. ** 数据准备 **:
|
948 |
+
- 确保你有一个包含每日海豹表演评分数据的 CSV 文件。
|
949 |
+
- 加载数据到 Python 中,通常使用`pandas`库。
|
950 |
+
|
951 |
+
2. ** 数据探索 **:
|
952 |
+
- 对数据进行初步的探索性数据分析(EDA),了解数据的基本统计特性,如均值、中位数、标准差等。
|
953 |
+
- 绘制时间序列图,观察数据的趋势和季节性。
|
954 |
+
|
955 |
+
3. ** 平稳性检验 **:
|
956 |
+
- 使用`statsmodels`中的`adfuller`函数来检验数据是否平稳。
|
957 |
+
- 如果数据不平稳,可能需要进行差分或转换以使其平稳。
|
958 |
+
|
959 |
+
4. ** 季节性分解 **:
|
960 |
+
- 使用`statsmodels`中的`seasonal_decompose`函数来分解时间序列数据,识别趋势、季节性和残差。
|
961 |
+
|
962 |
+
5. ** 模型选择 **:
|
963 |
+
- 根据数据的特点选择合适的时间序列模型,如 ARIMA、SARIMA、季节性分解的时间序列模型(STL)等。
|
964 |
+
|
965 |
+
6. ** 参数估计 **:
|
966 |
+
- 使用`statsmodels`中的模型估计函数来估计模型参数。
|
967 |
+
|
968 |
+
7. ** 模型诊断 **:
|
969 |
+
- 对模型进行诊断,检查残差是否符合白噪声假设。
|
970 |
+
|
971 |
+
8. ** 预测 **:
|
972 |
+
- 使用模型进行预测,并评估预测的准确性。
|
973 |
+
|
974 |
+
9. ** 结果解释 **:
|
975 |
+
- 解释模型的结果,包括趋势、季节性和周期性。
|
976 |
+
|
977 |
+
下面是一个简化的代码示例,展示如何使用`statsmodels`进行时间序列分析:
|
978 |
+
|
979 |
+
```python
|
980 |
+
import pandas as pd
|
981 |
+
import numpy as np
|
982 |
+
import statsmodels.api as sm
|
983 |
+
from statsmodels.tsa.seasonal import seasonal_decompose
|
984 |
+
from statsmodels.tsa.stattools import adfuller
|
985 |
+
|
986 |
+
# 加载数据
|
987 |
+
data = pd.read_csv('seal_performance_scores.csv', index_col='date', parse_dates=True)
|
988 |
+
|
989 |
+
# 数据探索
|
990 |
+
print(data.describe())
|
991 |
+
data.plot()
|
992 |
+
|
993 |
+
# 平稳性检验
|
994 |
+
result = adfuller(data['score'])
|
995 |
+
print('ADF Statistic: %f' % result[0])
|
996 |
+
print('p-value: %f' % result[1])
|
997 |
+
|
998 |
+
# 季节性分解
|
999 |
+
decomposition = seasonal_decompose(data['score'], model='additive')
|
1000 |
+
decomposition.plot()
|
1001 |
+
|
1002 |
+
# 模型选择和参数估计
|
1003 |
+
# 假设我们选择 ARIMA 模型
|
1004 |
+
# 这里需要根据实际情况调整 p, d, q 的值
|
1005 |
+
model = sm.tsa.ARIMA(data['score'], order=(1, 1, 1))
|
1006 |
+
model_fit = model.fit()
|
1007 |
+
print(model_fit.summary())
|
1008 |
+
|
1009 |
+
# 模型诊断
|
1010 |
+
residuals = model_fit.resid
|
1011 |
+
sm.graphics.tsa.plot_acf(residuals, lags=40)
|
1012 |
+
sm.graphics.tsa.plot_pacf(residuals, lags=40)
|
1013 |
+
|
1014 |
+
# 预测
|
1015 |
+
predictions = model_fit.get_prediction(start=pd.to_datetime('2023-01-01'), end=pd.to_datetime('2023-12-31'))
|
1016 |
+
predictions_df = predictions.summary_frame(alpha=0.05)
|
1017 |
+
|
1018 |
+
# 结果解释
|
1019 |
+
print(predictions_df)
|
1020 |
+
```
|
1021 |
+
|
1022 |
+
请注意,这只是一个非常���础的示例,实际应用中你需要根据数据的具体情况调整模型参数,并进行更深入的分析和验证。此外,预测结果的解释也需要结合实际情况来进行。
|
1023 |
+
|
1024 |
+
================================================================================
|
1025 |
+
Question: 使用 networkx 库,对给定的社交网络关系数据进行分析,包括最受欢迎的用户、哪个用户拥有最多的2度人脉。
|
1026 |
+
Answer: 要使用 Python 的 NetworkX 库对社交网络关系数据进行分析,首先需要安装 NetworkX 库。如果还没有安装,可以使用 pip 命令进行安装:
|
1027 |
+
|
1028 |
+
```bash
|
1029 |
+
pip install networkx
|
1030 |
+
```
|
1031 |
+
|
1032 |
+
接下来,我们将使用 NetworkX 库来分析一个简单的社交网络数据集。假设我们有以下用户及其关系:
|
1033 |
+
|
1034 |
+
```python
|
1035 |
+
import networkx as nx
|
1036 |
+
|
1037 |
+
# 创建一个空的无向图
|
1038 |
+
G = nx.Graph()
|
1039 |
+
|
1040 |
+
# 添加用户和关系
|
1041 |
+
G.add_edge('Alice', 'Bob')
|
1042 |
+
G.add_edge('Alice', 'Charlie')
|
1043 |
+
G.add_edge('Bob', 'Charlie')
|
1044 |
+
G.add_edge('Bob', 'David')
|
1045 |
+
G.add_edge('Charlie', 'David')
|
1046 |
+
G.add_edge('David', 'Eve')
|
1047 |
+
G.add_edge('Eve', 'Fred')
|
1048 |
+
G.add_edge('Fred', 'Ginny')
|
1049 |
+
G.add_edge('Ginny', 'Hermione')
|
1050 |
+
G.add_edge('Hermione', 'Ron')
|
1051 |
+
G.add_edge('Ron', 'Alice')
|
1052 |
+
```
|
1053 |
+
|
1054 |
+
现在,我们可以使用 NetworkX 库来分析这个社交网络。
|
1055 |
+
|
1056 |
+
### 最受欢迎的用户
|
1057 |
+
|
1058 |
+
最受欢迎的用户通常是指在社交网络中拥有最多连接的用户。我们可以通过计算每个节点的度(即与该节点相连的边的数量)来确定。
|
1059 |
+
|
1060 |
+
```python
|
1061 |
+
# 计算每个节点的度
|
1062 |
+
degrees = dict(G.degree())
|
1063 |
+
|
1064 |
+
# 找出度最高的节点
|
1065 |
+
most_popular_user = max(degrees, key=degrees.get)
|
1066 |
+
|
1067 |
+
print(f"最受欢迎的用户是:{most_popular_user}")
|
1068 |
+
```
|
1069 |
+
|
1070 |
+
### 拥有最多 2 度人脉的用户
|
1071 |
+
|
1072 |
+
拥有最多 2 度人脉的用户是指与他们直接相连的用户数量最多。我们可以使用 NetworkX 的`all_pairs_shortest_path`函数来找到所有用户之间的最短路径,并计算每个用户的 2 度人脉数量。
|
1073 |
+
|
1074 |
+
```python
|
1075 |
+
# 计算所有用户之间的最短路径
|
1076 |
+
paths = dict(nx.all_pairs_shortest_path(G))
|
1077 |
+
|
1078 |
+
# 计算每个用户的 2 度人脉数量
|
1079 |
+
two_hop_connections = {}
|
1080 |
+
for user in G.nodes():
|
1081 |
+
two_hop_connections[user] = sum(1 for path in paths[user].values() if len(path) == 2)
|
1082 |
+
|
1083 |
+
# 找出拥有最多 2 度人脉的用户
|
1084 |
+
most_two_hop_user = max(two_hop_connections, key=two_hop_connections.get)
|
1085 |
+
|
1086 |
+
print(f"拥有最多 2 度人脉的用户是:{most_two_hop_user}")
|
1087 |
+
```
|
1088 |
+
|
1089 |
+
以上代码段将输出最受欢迎的用户和拥有最多 2 度人脉的用户。请注意,这些分析假设了社交网络的结构,并且在实际应用中可能需要根据具体情况调整代码。
|
1090 |
+
|
1091 |
+
================================================================================
|
1092 |
+
Question: 写一段Python程序。开启一个SSH server,用户登录后可以玩贪吃蛇游戏。
|
1093 |
+
Answer: 要实现一个 SSH server 并在用户登录后玩贪吃蛇游戏,你需要使用 Python 的`paramiko`库来创建 SSH 服务器,并使用`pygame`库来实现贪吃蛇游戏。以下是一个简单的示例代码,展示了如何实现这个功能:
|
1094 |
+
|
1095 |
+
首先,确保你已经安装了`paramiko`和`pygame`库。如果没有安装,可以通过以下命令安装:
|
1096 |
+
|
1097 |
+
```bash
|
1098 |
+
pip install paramiko pygame
|
1099 |
+
```
|
1100 |
+
|
1101 |
+
然后,你可以使用以下 Python 代码创建一个 SSH server,并在用户登录后启动贪吃蛇游戏:
|
1102 |
+
|
1103 |
+
```python
|
1104 |
+
import paramiko
|
1105 |
+
import pygame
|
1106 |
+
import sys
|
1107 |
+
import threading
|
1108 |
+
|
1109 |
+
# 初始化 pygame
|
1110 |
+
pygame.init()
|
1111 |
+
|
1112 |
+
# 设置贪吃蛇游戏的参数
|
1113 |
+
screen_width = 640
|
1114 |
+
screen_height = 480
|
1115 |
+
snake_size = 10
|
1116 |
+
snake_speed = 15
|
1117 |
+
|
1118 |
+
# 定义颜色
|
1119 |
+
white = (255, 255, 255)
|
1120 |
+
black = (0, 0, 0)
|
1121 |
+
red = (213, 50, 80)
|
1122 |
+
green = (0, 255, 0)
|
1123 |
+
blue = (50, 153, 213)
|
1124 |
+
|
1125 |
+
# 创建屏幕
|
1126 |
+
screen = pygame.display.set_mode((screen_width, screen_height))
|
1127 |
+
pygame.display.set_caption('SSH Snake Game')
|
1128 |
+
|
1129 |
+
# 定义贪吃蛇类
|
1130 |
+
class Snake:
|
1131 |
+
def __init__(self):
|
1132 |
+
self.size = snake_size
|
1133 |
+
self.speed = snake_speed
|
1134 |
+
self.body = [(screen_width // 2, screen_height // 2)]
|
1135 |
+
self.direction = 'RIGHT'
|
1136 |
+
|
1137 |
+
def move(self):
|
1138 |
+
if self.direction == 'UP':
|
1139 |
+
new_head = (self.body[0][0], self.body[0][1] - self.size)
|
1140 |
+
elif self.direction == 'DOWN':
|
1141 |
+
new_head = (self.body[0][0], self.body[0][1] + self.size)
|
1142 |
+
elif self.direction == 'LEFT':
|
1143 |
+
new_head = (self.body[0][0] - self.size, self.body[0][1])
|
1144 |
+
elif self.direction == 'RIGHT':
|
1145 |
+
new_head = (self.body[0][0] + self.size, self.body[0][1])
|
1146 |
+
self.body.insert(0, new_head)
|
1147 |
+
self.body.pop()
|
1148 |
+
|
1149 |
+
def change_direction(self, direction):
|
1150 |
+
if direction == 'UP' and self.direction != 'DOWN':
|
1151 |
+
self.direction = 'UP'
|
1152 |
+
elif direction == 'DOWN' and self.direction != 'UP':
|
1153 |
+
self.direction = 'DOWN'
|
1154 |
+
elif direction == 'LEFT' and self.direction != 'RIGHT':
|
1155 |
+
self.direction = 'LEFT'
|
1156 |
+
elif direction == 'RIGHT' and self.direction != 'LEFT':
|
1157 |
+
self.direction = 'RIGHT'
|
1158 |
+
|
1159 |
+
def draw(self):
|
1160 |
+
for pos in self.body:
|
1161 |
+
pygame.draw.rect(screen, green, pygame.Rect(pos[0], pos[1], self.size, self.size))
|
1162 |
+
|
1163 |
+
# 创建贪吃蛇对象
|
1164 |
+
snake = Snake()
|
1165 |
+
|
1166 |
+
# 游戏主循环
|
1167 |
+
def game_loop():
|
1168 |
+
running = True
|
1169 |
+
while running:
|
1170 |
+
for event in pygame.event.get():
|
1171 |
+
if event.type == pygame.QUIT:
|
1172 |
+
running = False
|
1173 |
+
elif event.type == pygame.KEYDOWN:
|
1174 |
+
if event.key == pygame.K_UP:
|
1175 |
+
snake.change_direction('UP')
|
1176 |
+
elif event.key == pygame.K_DOWN:
|
1177 |
+
snake.change_direction('DOWN')
|
1178 |
+
elif event.key == pygame.K_LEFT:
|
1179 |
+
snake.change_direction('LEFT')
|
1180 |
+
elif event.key == pygame.K_RIGHT:
|
1181 |
+
snake.change_direction('RIGHT')
|
1182 |
+
|
1183 |
+
snake.move()
|
1184 |
+
screen.fill(black)
|
1185 |
+
snake.draw()
|
1186 |
+
pygame.display.update()
|
1187 |
+
pygame.time.Clock().tick(snake.speed)
|
1188 |
+
|
1189 |
+
pygame.quit()
|
1190 |
+
sys.exit()
|
1191 |
+
|
1192 |
+
# 创建 SSH server
|
1193 |
+
def create_ssh_server():
|
1194 |
+
host_key = paramiko.RSAKey.generate(2048)
|
1195 |
+
server = paramiko.SSHServer()
|
1196 |
+
server.set_allowed_auth_methods(['publickey'])
|
1197 |
+
server.add_host_key(host_key)
|
1198 |
+
|
1199 |
+
# 创建一个新的线程来运行游戏
|
1200 |
+
game_thread = threading.Thread(target=game_loop)
|
1201 |
+
game_thread.start()
|
1202 |
+
|
1203 |
+
# 等待连接
|
1204 |
+
while True:
|
1205 |
+
client, addr = server.accept()
|
1206 |
+
print(f'Accepted connection from {addr}')
|
1207 |
+
# 这里可以添加代码处理客户端连接,但为了简化,我们直接启动游戏
|
1208 |
+
game_thread.join()
|
1209 |
+
|
1210 |
+
if __name__ == '__main__':
|
1211 |
+
create_ssh_server()
|
1212 |
+
```
|
1213 |
+
|
1214 |
+
请注意,这个示例代码只是一个基础的框架,它没有实现真正的 SSH 认证和用户身份验证。在实际应用中,你需要实现更复杂的认证机制,比如使用密码、公钥等。此外,SSH 服务器的创建和管理通常涉及到网络编程,可能需要处理多个并发连接和异常情况。
|
1215 |
+
|
1216 |
+
在运行上述代码之前,请确保你有足够的权限来创建网络服务,并且在防火墙中允许相应的端口(默认是 22)。此外,由于 SSH 服务器的安全性较高,建议不要在生产环境中使用此代码,而应该使用更安全的解决方案。
|
1217 |
+
|
1218 |
+
================================================================================
|
1219 |
+
Question: 写一段Python程序。创建一个基于命令行的虚拟助手,能处理一些基本的任务,比如查看天气、设定提醒和闹钟、记笔记等。
|
1220 |
+
Answer: 创建一个基于命令行的虚拟助手涉及到多个步骤,包括定义功能、处理用户输入、执行任务以及提供反馈。以下是一个简单的 Python 程序示例,它可以处理一些基本的任务,如查看天气、设定提醒和闹钟、记笔记等。
|
1221 |
+
|
1222 |
+
```python
|
1223 |
+
import datetime
|
1224 |
+
import subprocess
|
1225 |
+
import os
|
1226 |
+
|
1227 |
+
# 定义一个函数来获取当前日期和时间
|
1228 |
+
def get_current_time():
|
1229 |
+
return datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
1230 |
+
|
1231 |
+
# 定义一个函数来获取天气信息
|
1232 |
+
def get_weather():
|
1233 |
+
# 这里使用了第三方库 requests 来获取天气信息,需要先安装 requests 库
|
1234 |
+
import requests
|
1235 |
+
api_key = "YOUR_API_KEY" # 替换为你的 API 密钥
|
1236 |
+
city = "Beijing" # 替换为你想要查询的城市
|
1237 |
+
url = f"http://api.openweathermap.org/data/2.5/weather?q={city}&appid={api_key}"
|
1238 |
+
response = requests.get(url)
|
1239 |
+
data = response.json()
|
1240 |
+
if data["cod"] != "404":
|
1241 |
+
weather_data = data["weather"][0]["description"]
|
1242 |
+
temperature = round(data["main"]["temp"] - 273.15, 2) # 转换为摄氏度
|
1243 |
+
return f"当前天气:{weather_data}, 温度:{temperature}°C"
|
1244 |
+
else:
|
1245 |
+
return "无法获取天气信息"
|
1246 |
+
|
1247 |
+
# 定义一个函数来设置提醒和闹钟
|
1248 |
+
def set_reminder(time, message):
|
1249 |
+
# 这里使用了 subprocess 模块来调用系统的提醒功能
|
1250 |
+
# 注意:不同的操作系统可能需要不同的命令
|
1251 |
+
if os.name == "nt": # Windows 系统
|
1252 |
+
subprocess.run(f'echo {message} | clip', shell=True)
|
1253 |
+
subprocess.run(f'at {time} echo {message}', shell=True)
|
1254 |
+
else: # Linux 或 macOS 系统
|
1255 |
+
subprocess.run(f'echo {message} | pbcopy', shell=True)
|
1256 |
+
subprocess.run(f'at {time} echo {message', shell=True)
|
1257 |
+
return f"提醒已设置,将在 {time} 提醒您:{message}"
|
1258 |
+
|
1259 |
+
# 定义一个函数来记笔记
|
1260 |
+
def note_taking(note):
|
1261 |
+
with open("notes.txt", "a") as file:
|
1262 |
+
file.write(f"{get_current_time()}: {note}\n")
|
1263 |
+
return "笔记已保存"
|
1264 |
+
|
1265 |
+
# 主程序
|
1266 |
+
def main():
|
1267 |
+
while True:
|
1268 |
+
print("欢迎使用虚拟助手,请输入你的命令:")
|
1269 |
+
command = input("> ").lower()
|
1270 |
+
|
1271 |
+
if command == "exit":
|
1272 |
+
print("再见!")
|
1273 |
+
break
|
1274 |
+
elif command == "time":
|
1275 |
+
print(get_current_time())
|
1276 |
+
elif command == "weather":
|
1277 |
+
print(get_weather())
|
1278 |
+
elif command.startswith("remind"):
|
1279 |
+
parts = command.split()
|
1280 |
+
if len(parts) == 3:
|
1281 |
+
time = parts[1]
|
1282 |
+
message = parts[2]
|
1283 |
+
print(set_reminder(time, message))
|
1284 |
+
else:
|
1285 |
+
print("请输入正确的提醒时间和内容,例如:remind 14:00 吃午饭")
|
1286 |
+
elif command.startswith("note"):
|
1287 |
+
parts = command.split(None, 1)
|
1288 |
+
if len(parts) == 2:
|
1289 |
+
note = parts[1]
|
1290 |
+
print(note_taking(note))
|
1291 |
+
else:
|
1292 |
+
print("请输入要记的笔记内容")
|
1293 |
+
else:
|
1294 |
+
print("未知命令,请输入 help 查看可用命令")
|
1295 |
+
|
1296 |
+
if __name__ == "__main__":
|
1297 |
+
main()
|
1298 |
+
```
|
1299 |
+
|
1300 |
+
请注意,这个程序使用了第三方库`requests`来获取天气信息,你需要先安装这个库才能运行。同样,提醒功能使用了`subprocess`模块来调用系统的命令行工具,这意味着它只能在支持这些命令的操作系统上运行。
|
1301 |
+
|
1302 |
+
此外,这个程序假设你有一个名为`YOUR_API_KEY`的 API 密钥,你需要替换为你自己的 API 密钥。同样,提醒功能也假设你使用的是 Windows 系统,如果你使用的是 Linux 或 macOS,你需要修改代码以适应你的系统。
|
1303 |
+
|
1304 |
+
最后,这个程序没有持久化存储功能,所有的提醒和笔记都是临时保存在内存中的,程序关闭后会丢失。如果你想要持久化存储,你需要将数据保存到文件或数据库中。
|
1305 |
+
|
1306 |
+
================================================================================
|
1307 |
+
Question: 写一段Python程序。编写一个局域网内聊天服务器,用户可以创建房间,也可以搜索并加入已存在的房间。通过UDP广播来实现局域网内房间的发现,通过websocket协议来实现聊天。
|
1308 |
+
Answer: 要编写一个局域网内聊天服务器,我们需要使用 Python 的`socket`库来处理 UDP 广播和 WebSocket 通信。以下是一个简单的示例程序,展示了如何实现这个功能。
|
1309 |
+
|
1310 |
+
首先,我们需要安装`websockets`库,它用于处理 WebSocket 通信:
|
1311 |
+
|
1312 |
+
```bash
|
1313 |
+
pip install websockets
|
1314 |
+
```
|
1315 |
+
|
1316 |
+
然后,我们可以编写以下代码:
|
1317 |
+
|
1318 |
+
```python
|
1319 |
+
import asyncio
|
1320 |
+
import socket
|
1321 |
+
import websockets
|
1322 |
+
|
1323 |
+
# 定义 UDP 广播地址和端口
|
1324 |
+
UDP_IP = "255.255.255.255"
|
1325 |
+
UDP_PORT = 5005
|
1326 |
+
|
1327 |
+
# 创建 UDP 套接字
|
1328 |
+
sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
|
1329 |
+
sock.setsockopt(socket.SOL_SOCKET, socket.SO_BROADCAST, 1)
|
1330 |
+
|
1331 |
+
# 定义 WebSocket 服务器地址和端口
|
1332 |
+
WEBSOCKET_HOST = 'localhost'
|
1333 |
+
WEBSOCKET_PORT = 8765
|
1334 |
+
|
1335 |
+
# 创建 WebSocket 服务器
|
1336 |
+
async def websocket_server(websocket, path):
|
1337 |
+
while True:
|
1338 |
+
message = await websocket.recv()
|
1339 |
+
print(f"Received message: {message}")
|
1340 |
+
# 这里可以添加逻辑来处理接收到的消息
|
1341 |
+
|
1342 |
+
# 启动 WebSocket 服务器
|
1343 |
+
start_server = websockets.serve(websocket_server, WEBSOCKET_HOST, WEBSOCKET_PORT)
|
1344 |
+
|
1345 |
+
# 发送 UDP 广播消息
|
1346 |
+
def send_broadcast(message):
|
1347 |
+
sock.sendto(message.encode(), (UDP_IP, UDP_PORT))
|
1348 |
+
|
1349 |
+
# 接收 UDP 广播消息
|
1350 |
+
def receive_broadcast():
|
1351 |
+
sock.bind(('', UDP_PORT))
|
1352 |
+
while True:
|
1353 |
+
data, addr = sock.recvfrom(1024)
|
1354 |
+
print(f"Received broadcast message: {data.decode()} from {addr}")
|
1355 |
+
# 这里可以添加逻辑来处理接收到的广播消息
|
1356 |
+
|
1357 |
+
# 主函数
|
1358 |
+
async def main():
|
1359 |
+
# 启动 WebSocket 服务器
|
1360 |
+
async with start_server:
|
1361 |
+
print(f"WebSocket server started at {WEBSOCKET_HOST}:{WEBSOCKET_PORT}")
|
1362 |
+
# 启动 UDP 广播接收器
|
1363 |
+
receive_broadcast_task = asyncio.create_task(receive_broadcast())
|
1364 |
+
# 等待 WebSocket 服务器和 UDP 广播接收器完成
|
1365 |
+
await asyncio.gather(start_server, receive_broadcast_task)
|
1366 |
+
|
1367 |
+
# 运行主函数
|
1368 |
+
asyncio.run(main())
|
1369 |
+
```
|
1370 |
+
|
1371 |
+
这个程序创建了一个 WebSocket 服务器和一个 UDP 广播接收器。WebSocket 服务器可以接收来自客户端的消息,而 UDP 广播接收器可以接收局域网内其他设备发送的广播消息。
|
1372 |
+
|
1373 |
+
请注意,这个程序只是一个基础示例,实际应用中可能需要更复杂的逻辑来处理用户创建房间、搜索房间、加入房间以及聊天消息的传输等功能。此外,为了确保程序的健壮性,还需要添加错误处理和异常管理。
|
1374 |
+
|
1375 |
+
================================================================================
|
1376 |
+
Question: 写一段Python程序。设计一个烤面包机的控制程序,提供Restful API,允许获取工作状态、开始烤面包。硬件基于Linux+Raspberry Pi,加热器通过GPIO控制开关。
|
1377 |
+
Answer: 要设计一个烤面包机的控制程序,我们可以使用 Python 编写一个简单的 Flask 应用程序,该程序将提供 RESTful API 来控制烤面包机的状态和操作。以下是一个基本的示例:
|
1378 |
+
|
1379 |
+
首先,确保你已经安装了 Flask 和 RPi.GPIO 库。如果没有安装,可以使用 pip 进行安装:
|
1380 |
+
|
1381 |
+
```bash
|
1382 |
+
pip install Flask
|
1383 |
+
pip install RPi.GPIO
|
1384 |
+
```
|
1385 |
+
|
1386 |
+
然后,创建一个名为`bread_oven.py`的 Python 文件,并添加以下代码:
|
1387 |
+
|
1388 |
+
```python
|
1389 |
+
from flask import Flask, jsonify, request
|
1390 |
+
import RPi.GPIO as GPIO
|
1391 |
+
import time
|
1392 |
+
|
1393 |
+
# 初始化 Flask 应用
|
1394 |
+
app = Flask(__name__)
|
1395 |
+
|
1396 |
+
# 设置 GPIO 模式为 BCM
|
1397 |
+
GPIO.setmode(GPIO.BCM)
|
1398 |
+
|
1399 |
+
# 定义 GPIO 引脚
|
1400 |
+
heater_pin = 18
|
1401 |
+
|
1402 |
+
# 初始化 GPIO 引脚
|
1403 |
+
GPIO.setup(heater_pin, GPIO.OUT)
|
1404 |
+
|
1405 |
+
# 烤面包机的状态
|
1406 |
+
is_baking = False
|
1407 |
+
|
1408 |
+
# 获取烤面包机的状态
|
1409 |
+
@app.route('/status', methods=['GET'])
|
1410 |
+
def get_status():
|
1411 |
+
global is_baking
|
1412 |
+
return jsonify({'status': 'baking' if is_baking else 'idle'})
|
1413 |
+
|
1414 |
+
# 开始烤面包
|
1415 |
+
@app.route('/start', methods=['POST'])
|
1416 |
+
def start_baking():
|
1417 |
+
global is_baking
|
1418 |
+
if not is_baking:
|
1419 |
+
# 打开加热器
|
1420 |
+
GPIO.output(heater_pin, GPIO.HIGH)
|
1421 |
+
is_baking = True
|
1422 |
+
return jsonify({'status': 'baking'})
|
1423 |
+
else:
|
1424 |
+
return jsonify({'status': 'already baking'})
|
1425 |
+
|
1426 |
+
# 停止烤面包
|
1427 |
+
@app.route('/stop', methods=['POST'])
|
1428 |
+
def stop_baking():
|
1429 |
+
global is_baking
|
1430 |
+
if is_baking:
|
1431 |
+
# 关闭加热器
|
1432 |
+
GPIO.output(heater_pin, GPIO.LOW)
|
1433 |
+
is_baking = False
|
1434 |
+
return jsonify({'status': 'idle'})
|
1435 |
+
else:
|
1436 |
+
return jsonify({'status': 'not baking'})
|
1437 |
+
|
1438 |
+
if __name__ == '__main__':
|
1439 |
+
try:
|
1440 |
+
app.run(host='0.0.0.0', port=5000)
|
1441 |
+
finally:
|
1442 |
+
# 清理 GPIO 设置
|
1443 |
+
GPIO.cleanup()
|
1444 |
+
```
|
1445 |
+
|
1446 |
+
这个程序定义了三个路由:
|
1447 |
+
|
1448 |
+
- `/status`:返回烤面包机的当前状态。
|
1449 |
+
- `/start`:开始烤面包,如果烤面包机当前不是在烤面包,则打开加热器。
|
1450 |
+
- `/stop`:停止烤面包,如果烤面包机当前正在烤面包,则关闭加热器。
|
1451 |
+
|
1452 |
+
在实际部署时,你可能需要根据你的硬件配置调整 GPIO 引脚号。
|
1453 |
+
|
1454 |
+
要运行这个程序,你可以在命令行中执行以下命令:
|
1455 |
+
|
1456 |
+
```bash
|
1457 |
+
python bread_oven.py
|
1458 |
+
```
|
1459 |
+
|
1460 |
+
然后,你可以通过浏览器或使用 curl 等工具访问`http://<your_raspberry_pi_ip>:5000/status`来获取烤面包机的状态,或者通过 POST 请求`http://<your_raspberry_pi_ip>:5000/start`和`http://<your_raspberry_pi_ip>:5000/stop`来控制烤面包机的操作。
|
1461 |
+
|
1462 |
+
请注意,这个程序只是一个简单的示例,实际应用中可能需要考虑更多的因素,例如错误处理、安全性、用户认证等。此外,在生产环境中,你还需要确保你的 Raspberry Pi 已经正确配置了 GPIO 引脚,并且你的网络设置允许外部设备访问你的服务。
|
1463 |
+
|
1464 |
+
================================================================================
|
1465 |
+
Question: 写一段Rust程序。编写一个电子宠物的模拟程序,它应该有一些基本的需求(如饥饿、无聊),用户可以通过控制台与电子宠物互动。用户可以在狗、猫、兔中选取并领养一只。
|
1466 |
+
Answer: 下面是一个简单的 Rust 程序,模拟了一个电子宠物游戏。在这个游戏中,用户可以选择领养一只狗、猫或兔,并与之互动。宠物有基本的需求,如饥饿和无聊,用户可以通过输入命令来与宠物互动。
|
1467 |
+
|
1468 |
+
```rust
|
1469 |
+
use std::io;
|
1470 |
+
|
1471 |
+
// 定义宠物结构体
|
1472 |
+
struct Pet {
|
1473 |
+
name: String,
|
1474 |
+
hunger: u32,
|
1475 |
+
boredom: u32,
|
1476 |
+
}
|
1477 |
+
|
1478 |
+
impl Pet {
|
1479 |
+
// 创建一个新的宠物
|
1480 |
+
fn new(name: &str) -> Pet {
|
1481 |
+
Pet {
|
1482 |
+
name: name.to_string(),
|
1483 |
+
hunger: 0,
|
1484 |
+
boredom: 0,
|
1485 |
+
}
|
1486 |
+
}
|
1487 |
+
|
1488 |
+
// 喂食宠物
|
1489 |
+
fn feed(&mut self) {
|
1490 |
+
self.hunger -= 10;
|
1491 |
+
if self.hunger < 0 {
|
1492 |
+
self.hunger = 0;
|
1493 |
+
}
|
1494 |
+
self.boredom += 5;
|
1495 |
+
if self.boredom > 100 {
|
1496 |
+
self.boredom = 100;
|
1497 |
+
}
|
1498 |
+
}
|
1499 |
+
|
1500 |
+
// 让宠物玩耍
|
1501 |
+
fn play(&mut self) {
|
1502 |
+
self.boredom -= 10;
|
1503 |
+
if self.boredom < 0 {
|
1504 |
+
self.boredom = 0;
|
1505 |
+
}
|
1506 |
+
self.hunger += 5;
|
1507 |
+
if self.hunger > 100 {
|
1508 |
+
self.hunger = 100;
|
1509 |
+
}
|
1510 |
+
}
|
1511 |
+
|
1512 |
+
// 检查宠物的状态
|
1513 |
+
fn check_status(&self) {
|
1514 |
+
println!("{} is hungry: {} and bored: {}", self.name, self.hunger, self.boredom);
|
1515 |
+
}
|
1516 |
+
}
|
1517 |
+
|
1518 |
+
fn main() {
|
1519 |
+
println!("Welcome to the Pet Simulator!");
|
1520 |
+
println!("Please choose a pet:");
|
1521 |
+
println!("1. Dog");
|
1522 |
+
println!("2. Cat");
|
1523 |
+
println!("3. Rabbit");
|
1524 |
+
|
1525 |
+
let mut choice = String::new();
|
1526 |
+
io::stdin().read_line(&mut choice).expect("Failed to read line");
|
1527 |
+
let choice: u32 = match choice.trim().parse() {
|
1528 |
+
Ok(num) => num,
|
1529 |
+
Err(_) => 0,
|
1530 |
+
};
|
1531 |
+
|
1532 |
+
let mut pet: Option<Pet> = None;
|
1533 |
+
match choice {
|
1534 |
+
1 => pet = Some(Pet::new("Dog")),
|
1535 |
+
2 => pet = Some(Pet::new("Cat")),
|
1536 |
+
3 => pet = Some(Pet::new("Rabbit")),
|
1537 |
+
_ => println!("Invalid choice!"),
|
1538 |
+
}
|
1539 |
+
|
1540 |
+
if let Some(ref mut pet) = pet {
|
1541 |
+
loop {
|
1542 |
+
println!("What would you like to do with your pet?");
|
1543 |
+
println!("1. Feed");
|
1544 |
+
println!("2. Play");
|
1545 |
+
println!("3. Check status");
|
1546 |
+
println!("4. Quit");
|
1547 |
+
|
1548 |
+
let mut action = String::new();
|
1549 |
+
io::stdin().read_line(&mut action).expect("Failed to read line");
|
1550 |
+
let action: u32 = match action.trim().parse() {
|
1551 |
+
Ok(num) => num,
|
1552 |
+
Err(_) => 0,
|
1553 |
+
};
|
1554 |
+
|
1555 |
+
match action {
|
1556 |
+
1 => pet.feed(),
|
1557 |
+
2 => pet.play(),
|
1558 |
+
3 => pet.check_status(),
|
1559 |
+
4 => break,
|
1560 |
+
_ => println!("Invalid action!"),
|
1561 |
+
}
|
1562 |
+
}
|
1563 |
+
}
|
1564 |
+
}
|
1565 |
+
```
|
1566 |
+
|
1567 |
+
这个程序首先定义了一个`Pet`结构体,它有名字、饥饿度和无聊度属性。然后,它提供了一个`new`方法来创建一个新的宠物,一个`feed`方法来喂食宠物,一个`play`方法来让宠物玩耍,以及一个`check_status`方法来检查宠物的状态。
|
1568 |
+
|
1569 |
+
在`main`函数中,程序会提示用户选择一个宠物,然后进入一个循环,让用户可以选择喂食、玩耍、检查宠物的状态或退出程序。每次用户选择一个操作后,程序都会根据用户的选择调用相应的方法。
|
1570 |
+
|
1571 |
+
请注意,这个程序是一个非常简单的模拟,没有实现真实的宠物行为,也没有处理所有可能的错误情况。在实际应用中,你可能需要添加更多的功能和复杂性。
|
1572 |
+
|
1573 |
+
================================================================================
|
1574 |
+
Question: 写一段Python程序。设计一个 AI 对战平台,用户可以上传他们的 AI 脚本(例如,用于玩国际象棋或围棋的 AI),然后这些 AI 可以在平台上互相对战。
|
1575 |
+
Answer: 要设计一个 AI 对战平台,我们可以使用 Python 的`multiprocessing`模块来创建一个多进程环境,其中每个进程代表一个 AI 实例。以下是一个简单的示例,展示了如何创建一个基本的 AI 对战平台。
|
1576 |
+
|
1577 |
+
首先,我们需要定义一个 AI 类,它将包含一个方法来运行 AI 脚本。然后,我们将创建一个主程序,它将启动两个 AI 实例,并允许它们相互对战。
|
1578 |
+
|
1579 |
+
```python
|
1580 |
+
import multiprocessing
|
1581 |
+
import time
|
1582 |
+
|
1583 |
+
# 假设我们有一个简单的 AI 脚本,它可以返回一个随机移动
|
1584 |
+
def simple_ai_move(board):
|
1585 |
+
# 这里只是一个示例,实际的 AI 脚本会更复杂
|
1586 |
+
# 返回一个随机合法的移动
|
1587 |
+
return "随机移动"
|
1588 |
+
|
1589 |
+
# AI 类
|
1590 |
+
class AI:
|
1591 |
+
def __init__(self, name):
|
1592 |
+
self.name = name
|
1593 |
+
|
1594 |
+
def run(self, board):
|
1595 |
+
# 运行 AI 脚本并返回结果
|
1596 |
+
return simple_ai_move(board)
|
1597 |
+
|
1598 |
+
# 主程序
|
1599 |
+
def main():
|
1600 |
+
# 创建两个 AI 实例
|
1601 |
+
ai1 = AI("AI1")
|
1602 |
+
ai2 = AI("AI2")
|
1603 |
+
|
1604 |
+
# 创建两个进程,每个进程运行一个 AI
|
1605 |
+
p1 = multiprocessing.Process(target=ai1.run, args=("棋盘状态",))
|
1606 |
+
p2 = multiprocessing.Process(target=ai2.run, args=("棋盘状态",))
|
1607 |
+
|
1608 |
+
# 启动进程
|
1609 |
+
p1.start()
|
1610 |
+
p2.start()
|
1611 |
+
|
1612 |
+
# 等待进程结束
|
1613 |
+
p1.join()
|
1614 |
+
p2.join()
|
1615 |
+
|
1616 |
+
# 获取结果
|
1617 |
+
result1 = p1.result
|
1618 |
+
result2 = p2.result
|
1619 |
+
|
1620 |
+
# 打印结果
|
1621 |
+
print(f"AI1 的移动: {result1}")
|
1622 |
+
print(f"AI2 的移动: {result2}")
|
1623 |
+
|
1624 |
+
if __name__ == "__main__":
|
1625 |
+
main()
|
1626 |
+
```
|
1627 |
+
|
1628 |
+
在这个示例中,我们定义了一个`simple_ai_move`函数,它返回一个随机移动。在`AI`类中,我们定义了一个`run`方法,它接受一个棋盘状态作为参数,并返回 AI 的移动。在`main`函数中,我们创建了两个`AI`实例,并使用`multiprocessing.Process`创建了两个进程,每个进程都运行一个 AI。然后,我们启动这些进程,并等待它们完成。最后,我们打印出每个 AI 的移动。
|
1629 |
+
|
1630 |
+
请注意,这个示例非常简单,没有实现真正的棋盘状态更新或棋局逻辑。在实际的 AI 对战平台中,你需要实现更复杂的逻辑来处理棋盘状态、移动生成、棋局评估等。此外,你可能还需要考虑如何处理网络通信,以便用户可以上传他们的 AI 脚本,并与平台上的其他 AI 实例进行对战。
|
1631 |
+
|
1632 |
+
================================================================================
|
config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "openbuddy-deepseekcoder-6b-v16.1-32k",
|
3 |
+
"architectures": [
|
4 |
+
"LlamaForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_bias": false,
|
7 |
+
"attention_dropout": 0.0,
|
8 |
+
"bos_token_id": 32013,
|
9 |
+
"eos_token_id": 32014,
|
10 |
+
"hidden_act": "silu",
|
11 |
+
"hidden_size": 4096,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 11008,
|
14 |
+
"max_position_embeddings": 8192,
|
15 |
+
"model_type": "llama",
|
16 |
+
"num_attention_heads": 32,
|
17 |
+
"num_hidden_layers": 32,
|
18 |
+
"num_key_value_heads": 32,
|
19 |
+
"pretraining_tp": 1,
|
20 |
+
"rms_norm_eps": 1e-06,
|
21 |
+
"rope_scaling": {
|
22 |
+
"factor": 4.0,
|
23 |
+
"type": "linear"
|
24 |
+
},
|
25 |
+
"rope_theta": 100000,
|
26 |
+
"tie_word_embeddings": false,
|
27 |
+
"torch_dtype": "bfloat16",
|
28 |
+
"transformers_version": "4.37.0.dev0",
|
29 |
+
"use_cache": true,
|
30 |
+
"vocab_size": 36352
|
31 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 32013,
|
4 |
+
"eos_token_id": 32014,
|
5 |
+
"transformers_version": "4.37.0.dev0"
|
6 |
+
}
|
model-00001-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a12fb6f6986fe85f9e0dc580ee929e4665b0b690f106a7f3a290303dc3ae26b3
|
3 |
+
size 4974636936
|
model-00002-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7990a32a78511a5631defc59291262693502e77475dfb05dfc3b76715ab39f3e
|
3 |
+
size 4947390880
|
model-00003-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3f1d6d4c771d32bebf7ede3c03f80558e95e34faa0f34905c6df54842a344c1f
|
3 |
+
size 3626140400
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 13548134400
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00003-of-00003.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00003.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
14 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
15 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
16 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
17 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
18 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
19 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
20 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
21 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
22 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
23 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
24 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
25 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
26 |
+
"model.layers.10.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
27 |
+
"model.layers.10.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
28 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
29 |
+
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
30 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
31 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
32 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
33 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
34 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
35 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
36 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
37 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
38 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
39 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
40 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
41 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
42 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
43 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
44 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
45 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
46 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
47 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
48 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
49 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
50 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
51 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
52 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
53 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
54 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
55 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
56 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
57 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
58 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
59 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
60 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
61 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
62 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
63 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
64 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
65 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
66 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
67 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
68 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
69 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
70 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
71 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
72 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
73 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
74 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
75 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
76 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
77 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
78 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
79 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
80 |
+
"model.layers.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
81 |
+
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
82 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
83 |
+
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
84 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
85 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
86 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
87 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
88 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
89 |
+
"model.layers.17.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
90 |
+
"model.layers.17.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
91 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
92 |
+
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
93 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
94 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
95 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
96 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
97 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
98 |
+
"model.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
99 |
+
"model.layers.18.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
100 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
101 |
+
"model.layers.18.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
102 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
103 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
104 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
105 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
106 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
107 |
+
"model.layers.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
108 |
+
"model.layers.19.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
109 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
110 |
+
"model.layers.19.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
111 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
112 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
113 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
114 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
115 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
116 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
117 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
118 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
119 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
120 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
121 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
122 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
123 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
124 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
125 |
+
"model.layers.20.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
126 |
+
"model.layers.20.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
127 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
128 |
+
"model.layers.20.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
129 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
130 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
131 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
132 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
133 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
134 |
+
"model.layers.21.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
135 |
+
"model.layers.21.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
136 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
137 |
+
"model.layers.21.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
138 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
139 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
140 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
141 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
142 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
143 |
+
"model.layers.22.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
144 |
+
"model.layers.22.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
145 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
146 |
+
"model.layers.22.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
147 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
148 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
149 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
150 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
151 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
152 |
+
"model.layers.23.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
153 |
+
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
154 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
155 |
+
"model.layers.23.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
156 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
157 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
158 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
159 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
160 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
161 |
+
"model.layers.24.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
162 |
+
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
163 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
164 |
+
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
165 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
166 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
167 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
168 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
169 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
170 |
+
"model.layers.25.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
171 |
+
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
172 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
173 |
+
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
174 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
175 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
176 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
177 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
178 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
179 |
+
"model.layers.26.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
180 |
+
"model.layers.26.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
181 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
182 |
+
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
183 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
184 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
185 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
186 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
187 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
188 |
+
"model.layers.27.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
189 |
+
"model.layers.27.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
190 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
191 |
+
"model.layers.27.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
192 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
193 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
194 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
195 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
196 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
197 |
+
"model.layers.28.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
198 |
+
"model.layers.28.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
199 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
200 |
+
"model.layers.28.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
201 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
202 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
203 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
204 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
205 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
206 |
+
"model.layers.29.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
207 |
+
"model.layers.29.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
208 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
209 |
+
"model.layers.29.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
210 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
211 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
212 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
213 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
214 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
215 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
216 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
217 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
218 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
219 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
220 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
221 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
222 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
223 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
224 |
+
"model.layers.30.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
225 |
+
"model.layers.30.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
226 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
227 |
+
"model.layers.30.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
228 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
229 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
230 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
231 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
232 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
233 |
+
"model.layers.31.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
234 |
+
"model.layers.31.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
235 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
236 |
+
"model.layers.31.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
237 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
238 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
239 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
240 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
241 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
242 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
243 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
244 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
245 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
246 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
247 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
248 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
249 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
250 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
251 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
252 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
253 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
254 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
255 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
256 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
257 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
258 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
259 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
260 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
261 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
262 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
263 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
264 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
265 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
266 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
267 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
268 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
269 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
270 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
271 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
272 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
273 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
274 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
275 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
276 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
277 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
278 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
279 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
280 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
281 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
282 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
283 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
284 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
285 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
286 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
287 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
288 |
+
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
289 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
290 |
+
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
291 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
292 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
293 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
294 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
295 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
296 |
+
"model.norm.weight": "model-00003-of-00003.safetensors"
|
297 |
+
}
|
298 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|begin▁of▁sentence|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": true,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|end▁of▁sentence|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": true,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "<|end▁of▁sentence|>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": true,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
}
|
23 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"__type": "AddedToken",
|
4 |
+
"content": "<|begin▁of▁sentence|>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": true,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false
|
9 |
+
},
|
10 |
+
"clean_up_tokenization_spaces": false,
|
11 |
+
"eos_token": {
|
12 |
+
"__type": "AddedToken",
|
13 |
+
"content": "<|end▁of▁sentence|>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": true,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false
|
18 |
+
},
|
19 |
+
"legacy": true,
|
20 |
+
"model_max_length": 16384,
|
21 |
+
"pad_token": {
|
22 |
+
"__type": "AddedToken",
|
23 |
+
"content": "<|end▁of▁sentence|>",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": true,
|
26 |
+
"rstrip": false,
|
27 |
+
"single_word": false
|
28 |
+
},
|
29 |
+
"sp_model_kwargs": {},
|
30 |
+
"tokenizer_class": "LlamaTokenizer",
|
31 |
+
"unk_token": null
|
32 |
+
}
|