Text-to-3D
image-to-3d
File size: 14,041 Bytes
854f0d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
import torch
from torch.utils.data import Dataset
import json
import numpy as np
import os
from PIL import Image
from torchvision import transforms as T
from kornia import create_meshgrid
from models.rays import gen_rays_from_single_image, gen_random_rays_from_single_image
import cv2 as cv
from data.scene import get_boundingbox


def get_ray_directions(H, W, focal, center=None):
    """
    Get ray directions for all pixels in camera coordinate.
    Reference: https://www.scratchapixel.com/lessons/3d-basic-rendering/
               ray-tracing-generating-camera-rays/standard-coordinate-systems
    Inputs:
        H, W, focal: image height, width and focal length
    Outputs:
        directions: (H, W, 3), the direction of the rays in camera coordinate
    """
    grid = create_meshgrid(H, W, normalized_coordinates=False)[0]
    i, j = grid.unbind(-1)
    # the direction here is without +0.5 pixel centering as calibration is not so accurate
    # see https://github.com/bmild/nerf/issues/24
    cent = center if center is not None else [W / 2, H / 2]
    directions = torch.stack([(i - cent[0]) / focal[0], (j - cent[1]) / focal[1], torch.ones_like(i)], -1)  # (H, W, 3)

    return directions

def get_rays(directions, c2w):
    """
    Get ray origin and normalized directions in world coordinate for all pixels in one image.
    Reference: https://www.scratchapixel.com/lessons/3d-basic-rendering/
               ray-tracing-generating-camera-rays/standard-coordinate-systems
    Inputs:
        directions: (H, W, 3) precomputed ray directions in camera coordinate
        c2w: (3, 4) transformation matrix from camera coordinate to world coordinate
    Outputs:
        rays_o: (H*W, 3), the origin of the rays in world coordinate
        rays_d: (H*W, 3), the normalized direction of the rays in world coordinate
    """
    # Rotate ray directions from camera coordinate to the world coordinate
    rays_d = directions @ c2w[:3, :3].T  # (H, W, 3)
    # rays_d = rays_d / torch.norm(rays_d, dim=-1, keepdim=True)
    # The origin of all rays is the camera origin in world coordinate
    rays_o = c2w[:3, 3].expand(rays_d.shape)  # (H, W, 3)

    rays_d = rays_d.view(-1, 3)
    rays_o = rays_o.view(-1, 3)

    return rays_o, rays_d


def load_K_Rt_from_P(filename, P=None):
    if P is None:
        lines = open(filename).read().splitlines()
        if len(lines) == 4:
            lines = lines[1:]
        lines = [[x[0], x[1], x[2], x[3]] for x in (x.split(" ") for x in lines)]
        P = np.asarray(lines).astype(np.float32).squeeze()

    out = cv.decomposeProjectionMatrix(P)
    K = out[0]
    R = out[1]
    t = out[2]

    K = K / K[2, 2]
    intrinsics = np.eye(4)
    intrinsics[:3, :3] = K

    pose = np.eye(4, dtype=np.float32)
    pose[:3, :3] = R.transpose()  # ? why need transpose here
    pose[:3, 3] = (t[:3] / t[3])[:, 0]

    return intrinsics, pose  # ! return cam2world matrix here


class BlenderDataset(Dataset):
    def __init__(self, root_dir, split, scan_id, n_views, train_img_idx=[], test_img_idx=[],
                 img_wh=[800, 800], clip_wh=[0, 0], original_img_wh=[800, 800],
                 N_rays=512, h_patch_size=5, near=2.0, far=6.0):
        self.root_dir = root_dir
        self.split = split
        self.img_wh = img_wh
        self.clip_wh = clip_wh
        self.define_transforms()
        self.train_img_idx = train_img_idx
        self.test_img_idx = test_img_idx
        self.N_rays = N_rays
        self.h_patch_size = h_patch_size  # used to extract patch for supervision
        self.n_views = n_views
        self.near, self.far = near, far
        self.blender2opencv = np.array([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]])

        with open(os.path.join(self.root_dir, f"transforms_{self.split}.json"), 'r') as f:
            self.meta = json.load(f)


        self.read_meta(near, far)
        # import ipdb; ipdb.set_trace()
        self.raw_near_fars = np.stack([np.array([self.near, self.far]) for i in range(len(self.meta['frames']))])


        # ! estimate scale_mat
        self.scale_mat, self.scale_factor = self.cal_scale_mat(
            img_hw=[self.img_wh[1], self.img_wh[0]],
            intrinsics=self.all_intrinsics[self.train_img_idx],
            extrinsics=self.all_w2cs[self.train_img_idx],
            near_fars=self.raw_near_fars[self.train_img_idx],
            factor=1.1)
        # self.scale_mat = np.eye(4)
        # self.scale_factor = 1.0
        # import ipdb; ipdb.set_trace()
        # * after scaling and translation, unit bounding box
        self.scaled_intrinsics, self.scaled_w2cs, self.scaled_c2ws, \
        self.scaled_affine_mats, self.scaled_near_fars = self.scale_cam_info()

        self.bbox_min = np.array([-1.0, -1.0, -1.0])
        self.bbox_max = np.array([1.0, 1.0, 1.0])
        self.partial_vol_origin = torch.Tensor([-1., -1., -1.])
        self.white_back = True

    def read_meta(self, near=2.0, far=6.0):


        self.ref_img_idx = self.train_img_idx[0]
        ref_c2w = np.array(self.meta['frames'][self.ref_img_idx]['transform_matrix']) @ self.blender2opencv
        # ref_c2w = torch.FloatTensor(ref_c2w)
        self.ref_c2w = ref_c2w
        self.ref_w2c = np.linalg.inv(ref_c2w)


        w, h = self.img_wh
        self.focal = 0.5 * 800 / np.tan(0.5 * self.meta['camera_angle_x'])  # original focal length
        self.focal *= self.img_wh[0] / 800  # modify focal length to match size self.img_wh

        # bounds, common for all scenes
        self.near = near
        self.far = far
        self.bounds = np.array([self.near, self.far])

        # ray directions for all pixels, same for all images (same H, W, focal)
        self.directions = get_ray_directions(h, w, [self.focal,self.focal])  # (h, w, 3)
        intrinsics = np.eye(4)
        intrinsics[:3, :3] = np.array([[self.focal,0,w/2],[0,self.focal,h/2],[0,0,1]]).astype(np.float32)
        self.intrinsics = intrinsics

        self.image_paths = []
        self.poses = []
        self.all_rays = []
        self.all_images = []
        self.all_masks = []
        self.all_w2cs = []
        self.all_intrinsics = []
        for frame in self.meta['frames']:
            pose = np.array(frame['transform_matrix']) @ self.blender2opencv
            self.poses += [pose]
            c2w = torch.FloatTensor(pose)
            w2c = np.linalg.inv(c2w)
            image_path = os.path.join(self.root_dir, f"{frame['file_path']}.png")
            self.image_paths += [image_path]
            img = Image.open(image_path)
            img = img.resize(self.img_wh, Image.LANCZOS)
            img = self.transform(img)  # (4, h, w)
            
            self.all_masks += [img[-1:,:]>0]
            # img = img[:3, :] * img[ -1:,:] + (1 - img[-1:, :])  # blend A to RGB
            img = img[:3, :] * img[ -1:,:] 
            img = img.numpy()  # (3, h, w)
            self.all_images += [img]


            self.all_masks += []
            self.all_intrinsics.append(self.intrinsics)
            # - transform from world system to ref-camera system
            self.all_w2cs.append(w2c @ np.linalg.inv(self.ref_w2c))
            
        self.all_images = torch.from_numpy(np.stack(self.all_images)).to(torch.float32)
        self.all_intrinsics = torch.from_numpy(np.stack(self.all_intrinsics)).to(torch.float32)
        self.all_w2cs = torch.from_numpy(np.stack(self.all_w2cs)).to(torch.float32)
        # self.img_wh = [self.img_wh[0] - self.clip_wh[0] - self.clip_wh[2],
        #                self.img_wh[1] - self.clip_wh[1] - self.clip_wh[3]]

    def cal_scale_mat(self, img_hw, intrinsics, extrinsics, near_fars, factor=1.):
        center, radius, _ = get_boundingbox(img_hw, intrinsics, extrinsics, near_fars)
        radius = radius * factor
        scale_mat = np.diag([radius, radius, radius, 1.0])
        scale_mat[:3, 3] = center.cpu().numpy()
        scale_mat = scale_mat.astype(np.float32)

        return scale_mat, 1. / radius.cpu().numpy()

    def scale_cam_info(self):
        new_intrinsics = []
        new_near_fars = []
        new_w2cs = []
        new_c2ws = []
        new_affine_mats = []
        for idx in range(len(self.all_images)):

            intrinsics = self.all_intrinsics[idx]
            # import ipdb; ipdb.set_trace()
            P = intrinsics @ self.all_w2cs[idx] @ self.scale_mat
            P = P.cpu().numpy()[:3, :4]

            # - should use load_K_Rt_from_P() to obtain c2w
            c2w = load_K_Rt_from_P(None, P)[1]
            w2c = np.linalg.inv(c2w)
            new_w2cs.append(w2c)
            new_c2ws.append(c2w)
            new_intrinsics.append(intrinsics)
            affine_mat = np.eye(4)
            affine_mat[:3, :4] = intrinsics[:3, :3] @ w2c[:3, :4]
            new_affine_mats.append(affine_mat)

            camera_o = c2w[:3, 3]
            dist = np.sqrt(np.sum(camera_o ** 2))
            near = dist - 1
            far = dist + 1

            new_near_fars.append([0.95 * near, 1.05 * far])

        new_intrinsics, new_w2cs, new_c2ws, new_affine_mats, new_near_fars = \
            np.stack(new_intrinsics), np.stack(new_w2cs), np.stack(new_c2ws), \
            np.stack(new_affine_mats), np.stack(new_near_fars)

        new_intrinsics = torch.from_numpy(np.float32(new_intrinsics))
        new_w2cs = torch.from_numpy(np.float32(new_w2cs))
        new_c2ws = torch.from_numpy(np.float32(new_c2ws))
        new_affine_mats = torch.from_numpy(np.float32(new_affine_mats))
        new_near_fars = torch.from_numpy(np.float32(new_near_fars))

        return new_intrinsics, new_w2cs, new_c2ws, new_affine_mats, new_near_fars

    def load_poses_all(self, file=f"transforms_train.json"):
        with open(os.path.join(self.root_dir, file), 'r') as f:
            meta = json.load(f)

        c2ws = []
        for i,frame in enumerate(meta['frames']):
            c2ws.append(np.array(frame['transform_matrix']) @ self.blender2opencv)
        return np.stack(c2ws)

    def define_transforms(self):
        self.transform = T.ToTensor()



    def get_conditional_sample(self):
        sample = {}
        support_idxs = self.train_img_idx

        sample['images'] = self.all_images[support_idxs]  # (V, 3, H, W)
        sample['w2cs'] = self.scaled_w2cs[self.train_img_idx]  # (V, 4, 4)
        sample['c2ws'] = self.scaled_c2ws[self.train_img_idx]  # (V, 4, 4)
        sample['near_fars'] = self.scaled_near_fars[self.train_img_idx]  # (V, 2)
        sample['intrinsics'] = self.scaled_intrinsics[self.train_img_idx][:, :3, :3]  # (V, 3, 3)
        sample['affine_mats'] = self.scaled_affine_mats[self.train_img_idx]  # ! in world space

        # sample['scan'] = self.scan_id
        sample['scale_factor'] = torch.tensor(self.scale_factor)
        sample['scale_mat'] = torch.from_numpy(self.scale_mat)
        sample['trans_mat'] = torch.from_numpy(np.linalg.inv(self.ref_w2c))
        sample['img_wh'] = torch.from_numpy(np.array(self.img_wh))
        sample['partial_vol_origin'] = torch.tensor(self.partial_vol_origin, dtype=torch.float32)

        return sample



    def __len__(self):
        if self.split == 'train':
            return self.n_views * 1000
        else:
            return len(self.test_img_idx) * 1000


    def __getitem__(self, idx):
        sample = {}

        if self.split == 'train':
            render_idx = self.train_img_idx[idx % self.n_views]
            support_idxs = [idx for idx in self.train_img_idx if idx != render_idx]
        else:
            # render_idx = idx % self.n_test_images + self.n_train_images
            render_idx = self.test_img_idx[idx % len(self.test_img_idx)]
            support_idxs = [render_idx]

        sample['images'] = self.all_images[support_idxs]  # (V, 3, H, W)
        sample['w2cs'] = self.scaled_w2cs[support_idxs]  # (V, 4, 4)
        sample['c2ws'] = self.scaled_c2ws[support_idxs]  # (V, 4, 4)
        sample['intrinsics'] = self.scaled_intrinsics[support_idxs][:, :3, :3]  # (V, 3, 3)
        sample['affine_mats'] = self.scaled_affine_mats[support_idxs]  # ! in world space
        # sample['scan'] = self.scan_id
        sample['scale_factor'] = torch.tensor(self.scale_factor)
        sample['img_wh'] = torch.from_numpy(np.array(self.img_wh))
        sample['partial_vol_origin'] = torch.tensor(self.partial_vol_origin, dtype=torch.float32)
        sample['img_index'] = torch.tensor(render_idx)

        # - query image
        sample['query_image'] = self.all_images[render_idx]
        sample['query_c2w'] = self.scaled_c2ws[render_idx]
        sample['query_w2c'] = self.scaled_w2cs[render_idx]
        sample['query_intrinsic'] = self.scaled_intrinsics[render_idx]
        sample['query_near_far'] = self.scaled_near_fars[render_idx]
        # sample['meta'] = str(self.scan_id) + "_" + os.path.basename(self.images_list[render_idx])
        sample['scale_mat'] = torch.from_numpy(self.scale_mat)
        sample['trans_mat'] = torch.from_numpy(np.linalg.inv(self.ref_w2c))
        sample['rendering_c2ws'] = self.scaled_c2ws[self.test_img_idx]
        sample['rendering_imgs_idx'] = torch.Tensor(np.array(self.test_img_idx).astype(np.int32))

        # - generate rays
        if self.split == 'val' or self.split == 'test':
            sample_rays = gen_rays_from_single_image(
                self.img_wh[1], self.img_wh[0],
                sample['query_image'],
                sample['query_intrinsic'],
                sample['query_c2w'],
                depth=None,
                mask=None)
        else:
            sample_rays = gen_random_rays_from_single_image(
                self.img_wh[1], self.img_wh[0],
                self.N_rays,
                sample['query_image'],
                sample['query_intrinsic'],
                sample['query_c2w'],
                depth=None,
                mask=None,
                dilated_mask=None,
                importance_sample=False,
                h_patch_size=self.h_patch_size
            )

        sample['rays'] = sample_rays

        return sample