# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from argparse import ArgumentParser from glob import glob import torch from einops import rearrange from huggingface_hub import snapshot_download from nemo.collections.nlp.data.language_modeling.megatron import indexed_dataset from cosmos1.models.autoregressive.nemo.utils import read_input_videos from discrete_video import DiscreteVideoFSQJITTokenizer from .log import log TOKENIZER_COMPRESSION_FACTOR = [8, 16, 16] DATA_RESOLUTION_SUPPORTED = [640, 1024] NUM_CONTEXT_FRAMES = 33 def main(args): if args.encoder_path == "nvidia/Cosmos-1.0-Tokenizer-DV8x16x16": args.encoder_path = os.path.join(snapshot_download(args.encoder_path), "encoder.jit") if args.decoder_path == "nvidia/Cosmos-1.0-Tokenizer-DV8x16x16": args.decoder_path = os.path.join(snapshot_download(args.decoder_path), "decoder.jit") video_tokenizer = DiscreteVideoFSQJITTokenizer( enc_fp=args.encoder_path, dec_fp=args.decoder_path, name="discrete_video_fsq", pixel_chunk_duration=NUM_CONTEXT_FRAMES, ).cuda() builders = {} key = "text" builders[key] = indexed_dataset.make_builder( f"{args.output_prefix}.bin", impl="mmap", chunk_size=64, pad_id=0, retrieval_db=None, vocab_size=64000, stride=64, ) filepaths_final = glob(f"{args.input_videos_dir}/*.mp4") for filepath in filepaths_final: input_video = read_input_videos(filepath).cuda() batch_size, channels, frames, height, width = input_video.shape latent_shape = ( (frames - 1) // TOKENIZER_COMPRESSION_FACTOR[0] + 1, height // TOKENIZER_COMPRESSION_FACTOR[1], width // TOKENIZER_COMPRESSION_FACTOR[2], ) T, H, W = latent_shape video_tokenizer.latent_chunk_duration = T quantized_out, _ = video_tokenizer.encode(input_video, pixel_chunk_duration=None) indices = video_tokenizer.fsq_quantizer.codes_to_indices(quantized_out.permute(0, 2, 3, 4, 1)) indices = rearrange(indices, "B T H W -> (B T H W)").detach().cpu() builders[key].add_item(torch.IntTensor(indices).detach().cpu()) builders[key].end_document() builders[key].finalize( f"{args.output_prefix}.idx", ) log.info(f"Stored the .bin and .idx files in {args.output_prefix}") if __name__ == "__main__": parser = ArgumentParser() parser.add_argument("--input_videos_dir", required=True, type=str, help="The path to the input videos") parser.add_argument( "--encoder_path", default="nvidia/Cosmos-1.0-Tokenizer-DV8x16x16", type=str, help="The path to encoder" ) parser.add_argument( "--decoder_path", default="nvidia/Cosmos-1.0-Tokenizer-DV8x16x16", type=str, help="The path to the decoder" ) parser.add_argument( "--output_prefix", required=True, type=str, help="The directory along with the output file name to write the .idx and .bin files (e.g /path/to/output/sample)", ) args = parser.parse_args() with torch.no_grad(): main(args)