File size: 5,078 Bytes
8c31d70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os

import imageio
import numpy as np
import torch

from ar_model import AutoRegressiveModel
from text2world_prompt_upsampler_inference import (
    create_prompt_upsampler,
    run_chat_completion,
)
from presets import (
    create_text_guardrail_runner,
    create_video_guardrail_runner,
    run_text_guardrail,
    run_video_guardrail,
)
from .log import log


def get_upsampled_prompt(
    prompt_upsampler_model: AutoRegressiveModel, input_prompt: str, temperature: float = 0.01
) -> str:
    """
    Get upsampled prompt from the prompt upsampler model instance.

    Args:
        prompt_upsampler_model: The prompt upsampler model instance.
        input_prompt (str): Original prompt to upsample.
        temperature (float): Temperature for generation (default: 0.01).

    Returns:
        str: The upsampled prompt.
    """
    dialogs = [
        [
            {
                "role": "user",
                "content": f"Upsample the short caption to a long caption: {input_prompt}",
            }
        ]
    ]

    upsampled_prompt = run_chat_completion(prompt_upsampler_model, dialogs, temperature=temperature)
    return upsampled_prompt


def print_rank_0(string: str):
    rank = torch.distributed.get_rank()
    if rank == 0:
        log.info(string)


def process_prompt(
    prompt: str,
    checkpoint_dir: str,
    prompt_upsampler_dir: str,
    guardrails_dir: str,
    image_path: str = None,
    enable_prompt_upsampler: bool = True,
) -> str:
    """
    Handle prompt upsampling if enabled, then run guardrails to ensure safety.

    Args:
        prompt (str): The original text prompt.
        checkpoint_dir (str): Base checkpoint directory.
        prompt_upsampler_dir (str): Directory containing prompt upsampler weights.
        guardrails_dir (str): Directory containing guardrails weights.
        image_path (str, optional): Path to an image, if any (not implemented for upsampling).
        enable_prompt_upsampler (bool): Whether to enable prompt upsampling.

    Returns:
        str: The upsampled prompt or original prompt if upsampling is disabled or fails.
    """

    text_guardrail = create_text_guardrail_runner(os.path.join(checkpoint_dir, guardrails_dir))

    # Check if the prompt is safe
    is_safe = run_text_guardrail(str(prompt), text_guardrail)
    if not is_safe:
        raise ValueError("Guardrail blocked world generation.")

    if enable_prompt_upsampler:
        if image_path:
            raise NotImplementedError("Prompt upsampling is not supported for image generation")
        else:
            prompt_upsampler = create_prompt_upsampler(
                checkpoint_dir=os.path.join(checkpoint_dir, prompt_upsampler_dir)
            )
            upsampled_prompt = get_upsampled_prompt(prompt_upsampler, prompt)
            print_rank_0(f"Original prompt: {prompt}\nUpsampled prompt: {upsampled_prompt}\n")
            del prompt_upsampler

            # Re-check the upsampled prompt
            is_safe = run_text_guardrail(str(upsampled_prompt), text_guardrail)
            if not is_safe:
                raise ValueError("Guardrail blocked world generation.")

            return upsampled_prompt
    else:
        return prompt


def save_video(
    grid: np.ndarray,
    fps: int,
    H: int,
    W: int,
    video_save_quality: int,
    video_save_path: str,
    checkpoint_dir: str,
    guardrails_dir: str,
):
    """
    Save video frames to file, applying a safety check before writing.

    Args:
        grid (np.ndarray): Video frames array [T, H, W, C].
        fps (int): Frames per second.
        H (int): Frame height.
        W (int): Frame width.
        video_save_quality (int): Video encoding quality (0-10).
        video_save_path (str): Output video file path.
        checkpoint_dir (str): Directory containing model checkpoints.
        guardrails_dir (str): Directory containing guardrails weights.
    """
    video_classifier_guardrail = create_video_guardrail_runner(os.path.join(checkpoint_dir, guardrails_dir))

    # Safety check on the entire video
    grid = run_video_guardrail(grid, video_classifier_guardrail)

    kwargs = {
        "fps": fps,
        "quality": video_save_quality,
        "macro_block_size": 1,
        "ffmpeg_params": ["-s", f"{W}x{H}"],
        "output_params": ["-f", "mp4"],
    }

    imageio.mimsave(video_save_path, grid, "mp4", **kwargs)