File size: 11,382 Bytes
8c31d70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from dataclasses import dataclass
from typing import Callable, Dict, Optional, Tuple

import torch
from torch import Tensor

from conditioner import BaseVideoCondition
from batch_ops import batch_mul
from res_sampler import COMMON_SOLVER_OPTIONS
from model_t2w import DiffusionT2WModel as VideoDiffusionModel
from lazy_config_init import instantiate as lazy_instantiate


@dataclass
class VideoLatentDiffusionDecoderCondition(BaseVideoCondition):
    # latent_condition will concat to the input of network, along channel dim;
    # cfg will make latent_condition all zero padding.
    latent_condition: Optional[torch.Tensor] = None
    latent_condition_sigma: Optional[torch.Tensor] = None


class LatentDiffusionDecoderModel(VideoDiffusionModel):
    def __init__(self, config):
        super().__init__(config)
        """
        latent_corruptor: the corruption module is used to corrupt the latents. It add gaussian noise to the latents.
        pixel_corruptor: the corruption module is used to corrupt the pixels. It apply gaussian blur kernel to pixels in a temporal consistent way.
        tokenizer_corruptor: the corruption module is used to simulate tokenizer reconstruction errors.

        diffusion decoder noise augmentation pipeline for continuous token condition model:
        condition: GT_video [T, H, W]
                        -> tokenizer_corruptor~(8x8x8) encode -> latent_corruptor -> tokenizer_corruptor~(8x8x8) decode
                        -> pixel corruptor
                        -> tokenizer~(1x8x8) encode -> condition [T, H/8, W/8]
        GT: GT_video [T, H, W] -> tokenizer~(1x8x8) -> x_t [T, H/8, W/8].

        diffusion decoder noise augmentation pipeline for discrete token condition model:
        condition: GT_video [T, H, W]
                -> pixel corruptor
                -> discrete tokenizer encode -> condition [T, T/8, H/16, W/16]
        GT: GT_video [T, H, W] -> tokenizer~(8x8x8) -> x_t [T, T/8, H/8, W/8].

        """
        self.latent_corruptor = lazy_instantiate(config.latent_corruptor)
        self.pixel_corruptor = lazy_instantiate(config.pixel_corruptor)
        self.tokenizer_corruptor = lazy_instantiate(config.tokenizer_corruptor)

        if self.latent_corruptor:
            self.latent_corruptor.to(**self.tensor_kwargs)
        if self.pixel_corruptor:
            self.pixel_corruptor.to(**self.tensor_kwargs)

        if self.tokenizer_corruptor:
            if hasattr(self.tokenizer_corruptor, "reset_dtype"):
                self.tokenizer_corruptor.reset_dtype()
        else:
            assert self.pixel_corruptor is not None

        self.diffusion_decoder_cond_sigma_low = config.diffusion_decoder_cond_sigma_low
        self.diffusion_decoder_cond_sigma_high = config.diffusion_decoder_cond_sigma_high
        self.diffusion_decoder_corrupt_prob = config.diffusion_decoder_corrupt_prob
        if hasattr(config, "condition_on_tokenizer_corruptor_token"):
            self.condition_on_tokenizer_corruptor_token = config.condition_on_tokenizer_corruptor_token
        else:
            self.condition_on_tokenizer_corruptor_token = False

    def is_image_batch(self, data_batch: dict[str, Tensor]) -> bool:
        """We hanlde two types of data_batch. One comes from a joint_dataloader where "dataset_name" can be used to differenciate image_batch and video_batch.
        Another comes from a dataloader which we by default assumes as video_data for video model training.
        """
        is_image = self.input_image_key in data_batch
        is_video = self.input_data_key in data_batch
        assert (
            is_image != is_video
        ), "Only one of the input_image_key or input_data_key should be present in the data_batch."
        return is_image

    def get_x0_fn_from_batch(
        self,
        data_batch: Dict,
        guidance: float = 1.5,
        is_negative_prompt: bool = False,
        apply_corruptor: bool = True,
        corrupt_sigma: float = 1.5,
        preencode_condition: bool = False,
    ) -> Callable:
        """
        Generates a callable function `x0_fn` based on the provided data batch and guidance factor.

        This function first processes the input data batch through a conditioning workflow (`conditioner`) to obtain conditioned and unconditioned states. It then defines a nested function `x0_fn` which applies a denoising operation on an input `noise_x` at a given noise level `sigma` using both the conditioned and unconditioned states.

        Args:
        - data_batch (Dict): A batch of data used for conditioning. The format and content of this dictionary should align with the expectations of the `self.conditioner`
        - guidance (float, optional): A scalar value that modulates the influence of the conditioned state relative to the unconditioned state in the output. Defaults to 1.5.
        - is_negative_prompt (bool): use negative prompt t5 in uncondition if true

        Returns:
        - Callable: A function `x0_fn(noise_x, sigma)` that takes two arguments, `noise_x` and `sigma`, and return x0 predictoin

        The returned function is suitable for use in scenarios where a denoised state is required based on both conditioned and unconditioned inputs, with an adjustable level of guidance influence.
        """
        input_key = self.input_data_key  # by default it is video key
        # Latent state
        raw_state = data_batch[input_key]

        if self.condition_on_tokenizer_corruptor_token:
            if preencode_condition:
                latent_condition = raw_state.to(torch.int32).contiguous()
                corrupted_pixel = self.tokenizer_corruptor.decode(latent_condition[:, 0])
            else:
                corrupted_pixel = (
                    self.pixel_corruptor(raw_state) if apply_corruptor and self.pixel_corruptor else raw_state
                )
                latent_condition = self.tokenizer_corruptor.encode(corrupted_pixel)
                latent_condition = latent_condition[1] if isinstance(latent_condition, tuple) else latent_condition
                corrupted_pixel = self.tokenizer_corruptor.decode(latent_condition)
                latent_condition = latent_condition.unsqueeze(1)
        else:
            if preencode_condition:
                latent_condition = raw_state
                corrupted_pixel = self.decode(latent_condition)
            else:
                corrupted_pixel = (
                    self.pixel_corruptor(raw_state) if apply_corruptor and self.pixel_corruptor else raw_state
                )
                latent_condition = self.encode(corrupted_pixel).contiguous()

        sigma = (
            torch.rand((latent_condition.shape[0],)).to(**self.tensor_kwargs) * corrupt_sigma
        )  # small value to indicate clean video
        _, _, _, c_noise_cond = self.scaling(sigma=sigma)
        if corrupt_sigma != self.diffusion_decoder_cond_sigma_low and self.diffusion_decoder_corrupt_prob > 0:
            noise = batch_mul(sigma, torch.randn_like(latent_condition))
            latent_condition = latent_condition + noise
        data_batch["latent_condition_sigma"] = batch_mul(torch.ones_like(latent_condition[:, 0:1, ::]), c_noise_cond)
        data_batch["latent_condition"] = latent_condition
        if is_negative_prompt:
            condition, uncondition = self.conditioner.get_condition_with_negative_prompt(data_batch)
        else:
            condition, uncondition = self.conditioner.get_condition_uncondition(data_batch)

        def x0_fn(noise_x: torch.Tensor, sigma: torch.Tensor) -> torch.Tensor:
            cond_x0 = self.denoise(noise_x, sigma, condition).x0
            uncond_x0 = self.denoise(noise_x, sigma, uncondition).x0
            return cond_x0 + guidance * (cond_x0 - uncond_x0)

        return x0_fn, corrupted_pixel

    def generate_samples_from_batch(
        self,
        data_batch: Dict,
        guidance: float = 1.5,
        seed: int = 1,
        state_shape: Tuple | None = None,
        n_sample: int | None = None,
        is_negative_prompt: bool = False,
        num_steps: int = 35,
        solver_option: COMMON_SOLVER_OPTIONS = "2ab",
        sigma_min: float = 0.02,
        apply_corruptor: bool = False,
        return_recon_x: bool = False,
        corrupt_sigma: float = 0.01,
        preencode_condition: bool = False,
    ) -> Tensor:
        """
        Generate samples from the batch. Based on given batch, it will automatically determine whether to generate image or video samples.
        Args:
            data_batch (dict): raw data batch draw from the training data loader.
            iteration (int): Current iteration number.
            guidance (float): guidance weights
            seed (int): random seed
            state_shape (tuple): shape of the state, default to self.state_shape if not provided
            n_sample (int): number of samples to generate
            is_negative_prompt (bool): use negative prompt t5 in uncondition if true
            num_steps (int): number of steps for the diffusion process
            solver_option (str): differential equation solver option, default to "2ab"~(mulitstep solver)
            preencode_condition (bool): use pre-computed condition if true, save tokenizer's inference time memory/
        """
        if not preencode_condition:
            self._normalize_video_databatch_inplace(data_batch)
            self._augment_image_dim_inplace(data_batch)
        is_image_batch = False
        if n_sample is None:
            input_key = self.input_image_key if is_image_batch else self.input_data_key
            n_sample = data_batch[input_key].shape[0]
        if state_shape is None:
            if is_image_batch:
                state_shape = (self.state_shape[0], 1, *self.state_shape[2:])  # C,T,H,W

        x0_fn, recon_x = self.get_x0_fn_from_batch(
            data_batch,
            guidance,
            is_negative_prompt=is_negative_prompt,
            apply_corruptor=apply_corruptor,
            corrupt_sigma=corrupt_sigma,
            preencode_condition=preencode_condition,
        )
        generator = torch.Generator(device=self.tensor_kwargs["device"])
        generator.manual_seed(seed)
        x_sigma_max = (
            torch.randn(n_sample, *state_shape, **self.tensor_kwargs, generator=generator) * self.sde.sigma_max
        )

        samples = self.sampler(
            x0_fn,
            x_sigma_max,
            num_steps=num_steps,
            sigma_min=sigma_min,
            sigma_max=self.sde.sigma_max,
            solver_option=solver_option,
        )

        if return_recon_x:
            return samples, recon_x
        else:
            return samples