File size: 7,868 Bytes
8c31d70 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert pretrained Pixtral vision model weights to checkpoint and verify the checkpoint loading.
Usage:
PYTHONPATH=$(pwd) python cosmos1/scripts/convert_pixtral_ckpt.py
"""
import argparse
import json
import os
import shutil
from glob import glob
import torch
from huggingface_hub import snapshot_download
from safetensors.torch import load_file
def convert_pixtral_checkpoint(checkpoint_dir: str, checkpoint_name: str, vit_type: str):
"""
Main function to convert Pixtral vision model weights to checkpoint and optionally verify and save the converted checkpoint.
Args:
checkpoint_dir (str): Path to the checkpoint directory
checkpoint_name (str): Name of the checkpoint
vit_type (str): Type of ViT used in the Pixtral model
This function performs the following steps:
0. Download the checkpoint from Hugging Face
1. Loads the original Pixtral checkpoint
2. Splits the checkpoint into vision encoder, projector, and LLM weights
3. Reorganizes the weights to match the expected format
4. Extracts and verifies the vision encoder configuration
5. Optionally verifies the converted checkpoint by loading it into a VisionTransformer
6. Optionally saves the converted checkpoint and configuration
"""
save_dir = os.path.join(checkpoint_dir, checkpoint_name)
os.makedirs(save_dir, exist_ok=True)
# Save the converted checkpoint
save_path = os.path.join(save_dir, "model.pt")
if os.path.exists(save_path) and os.path.getsize(save_path) > 0:
print(f"Checkpoint {save_path} already exists and is not empty")
return
pixtral_ckpt_dir = os.path.join(checkpoint_dir, "Pixtral-12B-2409")
os.makedirs(pixtral_ckpt_dir, exist_ok=True)
repo_id = "mistralai/Pixtral-12B-2409"
print(f"Downloading {repo_id} to {pixtral_ckpt_dir}...")
snapshot_download(
repo_id=repo_id,
allow_patterns=["params.json", "consolidated.safetensors"],
local_dir=pixtral_ckpt_dir,
local_dir_use_symlinks=False,
)
orig_dtype = torch.get_default_dtype()
dtype = torch.bfloat16
torch.set_default_dtype(dtype)
# Load checkpoint file
ckpt_files = glob(os.path.join(pixtral_ckpt_dir, "*.safetensors"))
assert len(ckpt_files) == 1, "ckpt_dir should contain only one file"
ckpt_path = ckpt_files[0]
ckpt = load_file(ckpt_path)
# Split checkpoint into weights of vision encoder, projector, and LLM
vit_key_prefix = "vision_encoder."
vit_ckpt = {}
for key, value in ckpt.items():
if key.startswith(vit_key_prefix):
vit_ckpt[key.lstrip(vit_key_prefix)] = value
projector_key_prefix = "vision_language_adapter."
projector_ckpt = {}
substring_replacement_map = {
"w_in.": "projector.0.",
"w_out.": "projector.2.",
}
for key, value in ckpt.items():
if key.startswith(projector_key_prefix):
key = key.lstrip(projector_key_prefix)
for old, new in substring_replacement_map.items():
key = key.replace(old, new)
projector_ckpt[key] = value
llm_ckpt = {}
for key, value in ckpt.items():
if key.startswith(vit_key_prefix) or key.startswith(projector_key_prefix):
continue
llm_ckpt[key] = value
vlm_ckpt = {}
for key, value in llm_ckpt.items():
vlm_ckpt["model." + key] = value
for key, value in projector_ckpt.items():
vlm_ckpt["mm_projector." + key] = value
for key, value in vit_ckpt.items():
vlm_ckpt["vision_encoder." + key] = value
# Load config
config_path = os.path.join(pixtral_ckpt_dir, "params.json")
with open(config_path, "r") as f:
pixtral_config = json.load(f)
# Extract the vision encoder configuration
vision_encoder_config = {
"dim": pixtral_config["vision_encoder"]["hidden_size"],
"num_channels": pixtral_config["vision_encoder"]["num_channels"],
"image_size": pixtral_config["vision_encoder"]["image_size"],
"patch_size": pixtral_config["vision_encoder"]["patch_size"],
"rope_theta": pixtral_config["vision_encoder"]["rope_theta"],
"ffn_hidden_size": pixtral_config["vision_encoder"]["intermediate_size"],
"n_layers": pixtral_config["vision_encoder"]["num_hidden_layers"],
"n_heads": pixtral_config["vision_encoder"]["num_attention_heads"],
"n_kv_heads": pixtral_config["vision_encoder"]["num_attention_heads"],
"norm_type": "rmsnorm",
"norm_eps": pixtral_config["norm_eps"],
"image_token_id": pixtral_config["vision_encoder"]["image_token_id"],
}
# Configuration for the 400M ViT of Pixtral 12B VLM
vit_config = dict(
dim=1024,
num_channels=3,
image_size=1024,
patch_size=16,
rope_theta=10000,
ffn_hidden_size=4096,
n_layers=24,
n_heads=16,
n_kv_heads=16,
norm_type="rmsnorm",
norm_eps=1e-5,
image_token_id=10,
)
# Compare the two configurations
for key, value in vit_config.items():
assert vision_encoder_config[key] == value, f"Mismatch in {key}: {vision_encoder_config[key]} != {value}"
llm_config_keys = [
"dim",
"n_layers",
"head_dim",
"hidden_dim",
"n_heads",
"n_kv_heads",
"rope_theta",
"norm_eps",
"vocab_size",
]
assert set(list(pixtral_config.keys())) == set(llm_config_keys + ["vision_encoder"]), "Config keys mismatch"
replace_map = {
"hidden_dim": "ffn_hidden_size",
}
llm_config = {}
for k, v in pixtral_config.items():
if k in llm_config_keys:
llm_config[replace_map.get(k, k)] = v
elif k == "vision_encoder":
llm_config["vision_encoder"] = vit_type
else:
raise ValueError(f"Unknown key: {k}")
ckpt_to_save = {"model": vlm_ckpt, "mm_projector": projector_ckpt, "vision_encoder": vit_ckpt}
torch.save(ckpt_to_save, save_path)
print(f"Model saved to {save_path}")
# Save config
config_path = os.path.join(save_dir, "config.json")
with open(config_path, "w") as f:
json.dump(llm_config, f)
torch.set_default_dtype(orig_dtype) # Reset the default dtype
# Remove the original Pixtral checkpoint
shutil.rmtree(pixtral_ckpt_dir, ignore_errors=True)
print(f"Removed {pixtral_ckpt_dir}")
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Convert pretrained Pixtral vision model weights to checkpoint and verify accuracy"
)
parser.add_argument("--checkpoint_dir", type=str, default="checkpoints", help="Path to the checkpoint directory")
parser.add_argument(
"--checkpoint_name",
type=str,
default="Pixtral-12B",
help="Name of the checkpoint",
)
parser.add_argument("--vit_type", default="pixtral-12b-vit", help="Type of ViT used in the Pixtral model")
args = parser.parse_args()
convert_pixtral_checkpoint(
checkpoint_dir=args.checkpoint_dir, checkpoint_name=args.checkpoint_name, vit_type=args.vit_type
)
|