File size: 12,372 Bytes
8c31d70 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
from abc import ABC, abstractmethod
from collections import defaultdict
from dataclasses import dataclass, fields
from enum import Enum
from typing import Any, Dict, List, Optional, Tuple, Union
import torch
import torch.nn as nn
from .batch_ops import batch_mul
from .log import log
from .lazy_config_init import instantiate
class BaseConditionEntry(nn.Module):
def __init__(self):
super().__init__()
self._dropout_rate = None
self._input_key = None
self._return_dict = False
@property
def dropout_rate(self) -> Union[float, torch.Tensor]:
return self._dropout_rate
@property
def input_key(self) -> str:
return self._input_key
@property
def is_return_dict(self) -> bool:
return self._return_dict
@dropout_rate.setter
def dropout_rate(self, value: Union[float, torch.Tensor]):
self._dropout_rate = value
@input_key.setter
def input_key(self, value: str):
self._input_key = value
@is_return_dict.setter
def is_return_dict(self, value: bool):
self._return_dict = value
@dropout_rate.deleter
def dropout_rate(self):
del self._dropout_rate
@input_key.deleter
def input_key(self):
del self._input_key
@is_return_dict.deleter
def is_return_dict(self):
del self._return_dict
def random_dropout_input(
self, in_tensor: torch.Tensor, dropout_rate: Optional[float] = None, key: Optional[str] = None
) -> torch.Tensor:
del key
dropout_rate = dropout_rate if dropout_rate is not None else self.dropout_rate
return batch_mul(
torch.bernoulli((1.0 - dropout_rate) * torch.ones(in_tensor.shape[0])).type_as(in_tensor),
in_tensor,
)
def summary(self) -> str:
pass
class DataType(Enum):
IMAGE = "image"
VIDEO = "video"
class TextAttr(BaseConditionEntry):
def __init__(self):
super().__init__()
def forward(self, token: torch.Tensor, mask: torch.Tensor):
return {"crossattn_emb": token, "crossattn_mask": mask}
def random_dropout_input(
self, in_tensor: torch.Tensor, dropout_rate: Optional[float] = None, key: Optional[str] = None
) -> torch.Tensor:
if key is not None and "mask" in key:
return in_tensor
return super().random_dropout_input(in_tensor, dropout_rate, key)
@dataclass
class BaseVideoCondition:
crossattn_emb: torch.Tensor
crossattn_mask: torch.Tensor
data_type: DataType = DataType.VIDEO
padding_mask: Optional[torch.Tensor] = None
fps: Optional[torch.Tensor] = None
num_frames: Optional[torch.Tensor] = None
image_size: Optional[torch.Tensor] = None
scalar_feature: Optional[torch.Tensor] = None
def to_dict(self) -> Dict[str, Optional[torch.Tensor]]:
return {f.name: getattr(self, f.name) for f in fields(self)}
@dataclass
class VideoExtendCondition(BaseVideoCondition):
video_cond_bool: Optional[torch.Tensor] = None # whether or not it conditioned on video
gt_latent: Optional[torch.Tensor] = None
condition_video_indicator: Optional[torch.Tensor] = None # 1 for condition region
# condition_video_input_mask will concat to the input of network, along channel dim;
# Will be concat with the input tensor
condition_video_input_mask: Optional[torch.Tensor] = None
# condition_video_augment_sigma: (B, T) tensor of sigma value for the conditional input augmentation, only valid when apply_corruption_to_condition_region is "noise_with_sigma" or "noise_with_sigma_fixed"
condition_video_augment_sigma: Optional[torch.Tensor] = None
class GeneralConditioner(nn.Module, ABC):
"""
An abstract module designed to handle various embedding models with conditional and
unconditional configurations. This abstract base class initializes and manages a collection
of embedders that can dynamically adjust their dropout rates based on conditioning.
Attributes:
KEY2DIM (dict): A mapping from output keys to dimensions used for concatenation.
embedders (nn.ModuleDict): A dictionary containing all embedded models initialized and
configured based on the provided configurations.
Parameters:
emb_models (Union[List, Any]): A dictionary where keys are embedder names and values
are configurations for initializing the embedders.
"""
KEY2DIM = {"crossattn_emb": 1, "crossattn_mask": 1}
def __init__(self, **emb_models: Union[List, Any]):
super().__init__()
self.embedders = nn.ModuleDict()
for n, (emb_name, embconfig) in enumerate(emb_models.items()):
embedder = instantiate(embconfig.obj)
assert isinstance(
embedder, BaseConditionEntry
), f"embedder model {embedder.__class__.__name__} has to inherit from AbstractEmbModel"
embedder.dropout_rate = getattr(embconfig, "dropout_rate", 0.0)
if hasattr(embconfig, "input_key"):
embedder.input_key = embconfig.input_key
elif hasattr(embconfig, "input_keys"):
embedder.input_keys = embconfig.input_keys
else:
raise KeyError(f"need either 'input_key' or 'input_keys' for embedder {embedder.__class__.__name__}")
log.debug(f"Initialized embedder #{n}-{emb_name}: \n {embedder.summary()}")
self.embedders[emb_name] = embedder
@abstractmethod
def forward(
self,
batch: Dict,
override_dropout_rate: Optional[Dict[str, float]] = None,
) -> Any:
"""Should be implemented in subclasses to handle conditon datatype"""
raise NotImplementedError
def _forward(
self,
batch: Dict,
override_dropout_rate: Optional[Dict[str, float]] = None,
) -> Dict:
"""
Processes the input batch through all configured embedders, applying conditional dropout rates if specified.
Output tensors for each key are concatenated along the dimensions specified in KEY2DIM.
Parameters:
batch (Dict): The input data batch to process.
override_dropout_rate (Optional[Dict[str, float]]): Optional dictionary to override default dropout rates
per embedder key.
Returns:
Dict: A dictionary of output tensors concatenated by specified dimensions.
Note:
In case the network code is sensitive to the order of concatenation, you can either control the order via \
config file or make sure the embedders return a unique key for each output.
"""
output = defaultdict(list)
if override_dropout_rate is None:
override_dropout_rate = {}
# make sure emb_name in override_dropout_rate is valid
for emb_name in override_dropout_rate.keys():
assert emb_name in self.embedders, f"invalid name found {emb_name}"
for emb_name, embedder in self.embedders.items():
with torch.no_grad():
if hasattr(embedder, "input_key") and (embedder.input_key is not None):
emb_out = embedder(
embedder.random_dropout_input(
batch[embedder.input_key], override_dropout_rate.get(emb_name, None)
)
)
elif hasattr(embedder, "input_keys"):
emb_out = embedder(
*[
embedder.random_dropout_input(batch[k], override_dropout_rate.get(emb_name, None), k)
for k in embedder.input_keys
]
)
for k, v in emb_out.items():
output[k].append(v)
# Concatenate the outputs
return {k: torch.cat(v, dim=self.KEY2DIM.get(k, -1)) for k, v in output.items()}
def get_condition_uncondition(
self,
data_batch: Dict,
) -> Tuple[Any, Any]:
"""
Processes the provided data batch to generate conditioned and unconditioned outputs.
This method manipulates dropout rates to simulate two scenarios:
1. All conditions applied (conditioned)
2. Conditions removed/reduced to minimum (unconditioned)
This method sets dropout rates to zero for the conditioned scenario to fully apply
embedders' effects. For unconditioned, it sets rates to 1 (or 0 if initial rate is
insignificant) to minimize embedder influences.
Parameters:
data_batch (Dict): Input data batch containing all necessary information for
embedding processing.
Returns:
Tuple[Any, Any]: A tuple containing:
- Outputs with all embedders fully applied (conditioned)
- Outputs with embedders minimized/not applied (unconditioned)
"""
cond_dropout_rates, dropout_rates = {}, {}
for emb_name, embedder in self.embedders.items():
cond_dropout_rates[emb_name] = 0.0
dropout_rates[emb_name] = 1.0 if embedder.dropout_rate > 1e-4 else 0.0
condition: Any = self(data_batch, override_dropout_rate=cond_dropout_rates)
un_condition: Any = self(data_batch, override_dropout_rate=dropout_rates)
return condition, un_condition
def get_condition_with_negative_prompt(
self,
data_batch: Dict,
) -> Tuple[Any, Any]:
"""
Similar functionality as get_condition_uncondition
But use negative prompts for unconditon
"""
cond_dropout_rates, uncond_dropout_rates = {}, {}
for emb_name, embedder in self.embedders.items():
cond_dropout_rates[emb_name] = 0.0
if isinstance(embedder, TextAttr):
uncond_dropout_rates[emb_name] = 0.0
else:
uncond_dropout_rates[emb_name] = 1.0 if embedder.dropout_rate > 1e-4 else 0.0
data_batch_neg_prompt = copy.deepcopy(data_batch)
if "neg_t5_text_embeddings" in data_batch_neg_prompt:
if isinstance(data_batch_neg_prompt["neg_t5_text_embeddings"], torch.Tensor):
data_batch_neg_prompt["t5_text_embeddings"] = data_batch_neg_prompt["neg_t5_text_embeddings"]
data_batch_neg_prompt["t5_text_mask"] = data_batch_neg_prompt["neg_t5_text_mask"]
condition: Any = self(data_batch, override_dropout_rate=cond_dropout_rates)
un_condition: Any = self(data_batch_neg_prompt, override_dropout_rate=uncond_dropout_rates)
return condition, un_condition
@dataclass
class CosmosCondition:
crossattn_emb: torch.Tensor
crossattn_mask: torch.Tensor
padding_mask: Optional[torch.Tensor] = None
scalar_feature: Optional[torch.Tensor] = None
def to_dict(self) -> Dict[str, Optional[torch.Tensor]]:
return {f.name: getattr(self, f.name) for f in fields(self)}
class VideoConditioner(GeneralConditioner):
def forward(
self,
batch: Dict,
override_dropout_rate: Optional[Dict[str, float]] = None,
) -> BaseVideoCondition:
output = super()._forward(batch, override_dropout_rate)
return BaseVideoCondition(**output)
class VideoExtendConditioner(GeneralConditioner):
def forward(
self,
batch: Dict,
override_dropout_rate: Optional[Dict[str, float]] = None,
) -> VideoExtendCondition:
output = super()._forward(batch, override_dropout_rate)
return VideoExtendCondition(**output)
|