File size: 12,692 Bytes
8c31d70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import os
from abc import ABC
from typing import Any

import numpy as np
import torch

from .t5_text_encoder import CosmosT5TextEncoder
from .presets import presets as guardrail_presets


class BaseWorldGenerationPipeline(ABC):
    def __init__(
        self,
        inference_type: str | None = None,
        checkpoint_dir: str | None = None,
        checkpoint_name: str | None = None,
        enable_text_guardrail: bool = False,
        enable_video_guardrail: bool = False,
        offload_network: bool = False,
        offload_tokenizer: bool = False,
        offload_text_encoder_model: bool = False,
        offload_guardrail_models: bool = False,
    ):
        """Initialize base world generation pipeline.

        This abstract base class provides core functionality for world generation models including:
        - Model loading and initialization
        - Text encoding and embedding
        - Safety checks and content filtering
        - Memory management through model offloading

        Args:
            inference_type: The type of inference pipeline ("text2world" or "video2world")
            checkpoint_dir: Root directory containing model checkpoints
            checkpoint_name: Name of the specific checkpoint file to load
            enable_text_guardrail: If True, validates input prompts for safety
            enable_video_guardrail: If True, validates generated videos for safety
            offload_network: If True, moves main model to CPU after inference
            offload_tokenizer: If True, moves tokenizer to CPU after use
            offload_text_encoder_model: If True, moves T5 encoder to CPU after encoding
            offload_guardrail_models: If True, moves safety models to CPU after checks
        """
        self.inference_type = inference_type
        self.checkpoint_dir = checkpoint_dir
        self.checkpoint_name = checkpoint_name
        self.guardrail_dir = "Cosmos-1.0-Guardrail"
        self.enable_text_guardrail = enable_text_guardrail
        self.enable_video_guardrail = enable_video_guardrail

        # Add offloading flags
        self.offload_network = offload_network
        self.offload_tokenizer = offload_tokenizer
        self.offload_text_encoder_model = offload_text_encoder_model
        self.offload_guardrail_models = offload_guardrail_models

        # Initialize model instances
        self.text_guardrail = None
        self.video_guardrail = None
        self.text_encoder = None
        self.model = None

        self._load_model()

        if not self.offload_text_encoder_model:
            self._load_text_encoder_model()
        if not self.offload_guardrail_models:
            if self.enable_text_guardrail:
                self._load_text_guardrail()
            if self.enable_video_guardrail:
                self._load_video_guardrail()
        if not self.offload_network:
            self._load_network()
        if not self.offload_tokenizer:
            self._load_tokenizer()

    def _load_tokenizer(self):
        pass

    def _load_network(self):
        pass

    def _load_model(self, checkpoint_name: str) -> Any:
        """Load the world generation model from a checkpoint.

        This abstract method must be implemented by subclasses to load their specific
        model architecture and weights.

        Args:
            checkpoint_name: Path to the model checkpoint file

        Returns:
            The loaded model instance

        Raises:
            NotImplementedError: Must be implemented by subclasses
        """
        pass

    def _load_text_encoder_model(self):
        """Load the T5 text encoder model.

        Initializes and loads the T5 encoder model used for converting text prompts
        into embeddings that condition the world generation model.

        Returns:
            Loaded T5 text encoder model instance
        """
        self.text_encoder = CosmosT5TextEncoder(cache_dir=self.checkpoint_dir)

    def _load_text_guardrail(self):
        """Load text safety classifier models.

        Initializes models used for checking input prompts against safety policies.
        Models are loaded from the specified guardrail directory.
        """
        self.text_guardrail = guardrail_presets.create_text_guardrail_runner(
            checkpoint_dir=os.path.join(self.checkpoint_dir, self.guardrail_dir)
        )

    def _load_video_guardrail(self):
        """Load video safety classifier models.

        Initializes models used for validating generated video content against
        safety policies. Models are loaded from the specified guardrail directory.
        """
        self.video_guardrail = guardrail_presets.create_video_guardrail_runner(
            checkpoint_dir=os.path.join(self.checkpoint_dir, self.guardrail_dir)
        )

    def _offload_network(self):
        if self.model.model:
            del self.model.model
            self.model.model = None
            gc.collect()
            torch.cuda.empty_cache()

    def _offload_tokenizer(self):
        if self.model.tokenizer:
            del self.model.tokenizer
            self.model.tokenizer = None
            gc.collect()
            torch.cuda.empty_cache()

    def _offload_guardrail_models(self):
        """Offload safety classifier models to reduce memory usage.

        Moves safety models to CPU and clears GPU memory if they are no longer needed.
        This helps manage memory when processing multiple inputs sequentially.
        """
        if self.text_guardrail:
            del self.text_guardrail
            self.text_guardrail = None
        if self.video_guardrail:
            del self.video_guardrail
            self.video_guardrail = None
        gc.collect()
        torch.cuda.empty_cache()

    def _offload_text_encoder_model(self):
        """Offload T5 text encoder to reduce memory usage.

        Moves the T5 encoder to CPU and clears GPU memory after text encoding is complete.
        This helps manage memory when processing multiple inputs sequentially.
        """
        if self.text_encoder:
            del self.text_encoder
            self.text_encoder = None
            gc.collect()
            torch.cuda.empty_cache()

    def _run_model(self, *args: Any, **kwargs: Any) -> torch.Tensor:
        """Generate world latents using the model.

        This abstract method must be implemented by subclasses to define their specific
        generation process.

        Args:
            *args: Variable positional arguments for model inference
            **kwargs: Variable keyword arguments for model inference

        Returns:
            torch.Tensor: Generated world representation tensor
        """
        pass

    def _run_model_with_offload(self, *args: Any, **kwargs: Any) -> torch.Tensor:
        """Generate world representation with memory management.

        Handles loading the model before inference and offloading afterward if enabled.
        This helps minimize GPU memory usage during inference.

        Args:
            *args: Arguments passed to _run_model
            **kwargs: Keyword arguments passed to _run_model

        Returns:
            np.ndarray: Generated world representation as numpy array
        """
        pass

    def _run_guardrail_on_prompt(self, prompt: str) -> bool:
        """Check if prompt meets safety requirements.

        Validates the input prompt against safety policies using loaded guardrail models.

        Args:
            prompt: Raw text prompt to validate

        Returns:
            bool: True if prompt passes all safety checks, False otherwise
        """
        return guardrail_presets.run_text_guardrail(prompt, self.text_guardrail)

    def _run_guardrail_on_prompt_with_offload(self, prompt: str) -> bool:
        """Check prompt safety with memory management.

        Validates prompt safety while handling model loading/offloading to manage memory.

        Args:
            prompt: Raw text prompt to validate

        Returns:
            bool: True if prompt passes all safety checks, False otherwise
        """
        if self.offload_guardrail_models:
            self._load_text_guardrail()

        is_safe = self._run_guardrail_on_prompt(prompt)

        if self.offload_guardrail_models:
            self._offload_guardrail_models()

        return is_safe

    def _run_guardrail_on_video(self, video: np.ndarray) -> np.ndarray | None:
        """Check if video meets safety requirements.

        Validates generated video content against safety policies using guardrail models.

        Args:
            video: Video frames to validate

        Returns:
            np.ndarray: Processed video if safe, None if unsafe
        """
        return guardrail_presets.run_video_guardrail(video, self.video_guardrail)

    def _run_guardrail_on_video_with_offload(self, video: np.ndarray) -> np.ndarray | None:
        """Check if generated video meets safety requirements.

        Args:
            video: Video frames to validate

        Returns:
            np.ndarray: Processed video frames if safe, None otherwise

        Note:
            Guardrail models are offloaded after checks if enabled.
        """
        if self.offload_guardrail_models:
            self._load_video_guardrail()

        video = self._run_guardrail_on_video(video)

        if self.offload_guardrail_models:
            self._offload_guardrail_models()
        return video

    def _run_text_embedding_on_prompt(
        self, prompts: list[str], **kwargs: Any
    ) -> tuple[list[torch.Tensor], list[torch.Tensor]]:
        """Convert text prompts to embeddings.

        Processes text prompts into embedding tensors that condition the generation model.

        Args:
            prompts: List of text prompts to encode
            **kwargs: Additional arguments for text encoding

        Returns:
            tuple containing:
                - List of text embedding tensors for each prompt
                - List of attention masks for each embedding
        """

        embeddings = []
        masks = []
        for prompt in prompts:
            embedding, mask = self.text_encoder.encode_prompts(
                [prompt],
                **kwargs,
            )
            embeddings.append(embedding)
            masks.append(mask)

        return embeddings, masks

    def _run_text_embedding_on_prompt_with_offload(
        self, prompts: list[str], **kwargs: Any
    ) -> tuple[list[torch.Tensor], list[torch.Tensor]]:
        """Convert text prompt into embeddings using T5 encoder.

        Args:
            prompt: Processed and validated text prompt

        Returns:
            Text embedding tensor to condition diffusion model

        Note:
            T5 model is offloaded after encoding if enabled.
        """
        if self.offload_text_encoder_model:
            self._load_text_encoder_model()

        embeddings, masks = self._run_text_embedding_on_prompt(prompts, **kwargs)

        if self.offload_text_encoder_model:
            self._offload_text_encoder_model()
        return embeddings, masks

    def _run_tokenizer_decoding(self, samples: torch.Tensor) -> np.ndarray:
        """Decode model outputs into final world representation.

        This abstract method must be implemented by subclasses to convert raw model
        outputs into their specific world representation format.

        Args:
            samples: Raw output tensor from the generation model

        Returns:
            np.ndarray: Decoded world representation
        """
        pass

    def generate(self, *args: Any, **kwargs: Any):
        """Generate world representation.

        This abstract method must be implemented by subclasses to convert raw model
        outputs into their specific world representation format.

        Args:
            *args: Variable positional arguments for model inference
            **kwargs: Variable keyword arguments for model inference
        """
        pass