File size: 11,834 Bytes
8c31d70 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Optional
import numpy as np
import torch
import transformer_engine as te
from einops import rearrange
from torch import nn
from torch.utils.checkpoint import checkpoint
from transformer_engine.pytorch.attention import DotProductAttention, apply_rotary_pos_emb
# ---------------------- Feed Forward Network -----------------------
class FeedForward(nn.Module):
"""
Transformer FFN with optional gating
Parameters:
d_model (int): Dimensionality of input features.
d_ff (int): Dimensionality of the hidden layer.
dropout (float, optional): Dropout rate applied after the activation function. Defaults to 0.1.
activation (callable, optional): The activation function applied after the first linear layer.
Defaults to nn.ReLU().
is_gated (bool, optional): If set to True, incorporates gating mechanism to the feed-forward layer.
Defaults to False.
bias (bool, optional): If set to True, adds a bias to the linear layers. Defaults to True.
Example:
>>> ff = FeedForward(d_model=512, d_ff=2048)
>>> x = torch.randn(64, 10, 512) # Example input tensor
>>> output = ff(x)
>>> print(output.shape) # Expected shape: (64, 10, 512)
"""
def __init__(
self,
d_model: int,
d_ff: int,
dropout: float = 0.1,
activation=nn.ReLU(),
is_gated: bool = False,
bias: bool = False,
) -> None:
super().__init__()
self.layer1 = nn.Linear(d_model, d_ff, bias=bias)
self.layer2 = nn.Linear(d_ff, d_model, bias=bias)
self.dropout = nn.Dropout(dropout)
self.activation = activation
self.is_gated = is_gated
if is_gated:
self.linear_gate = nn.Linear(d_model, d_ff, bias=False)
def forward(self, x: torch.Tensor):
g = self.activation(self.layer1(x))
if self.is_gated:
x = g * self.linear_gate(x)
else:
x = g
assert self.dropout.p == 0.0, "we skip dropout"
return self.layer2(x)
class GPT2FeedForward(FeedForward):
def __init__(self, d_model: int, d_ff: int, dropout: float = 0.1, bias: bool = False):
super().__init__(
d_model=d_model,
d_ff=d_ff,
dropout=dropout,
activation=nn.GELU(),
is_gated=False,
bias=bias,
)
def forward(self, x: torch.Tensor):
assert self.dropout.p == 0.0, "we skip dropout"
x = self.layer1(x)
def activation_layer2_forward(x):
x = self.activation(x)
x = self.layer2(x)
return x
x = checkpoint(activation_layer2_forward, x, use_reentrant=False)
return x
# ---------------------- Normalization Layer -----------------------
def normalize(x: torch.Tensor, dim: Optional[List[int]] = None, eps: float = 0) -> torch.Tensor:
"""
Normalizes the input tensor along specified dimensions such that the average square norm of elements is adjusted.
Args:
x (torch.Tensor): The input tensor to normalize.
dim (list, optional): The dimensions over which to normalize. If None, normalizes over all dimensions except the first.
eps (float, optional): A small constant to ensure numerical stability during division.
Returns:
torch.Tensor: The normalized tensor.
"""
if dim is None:
dim = list(range(1, x.ndim))
norm = torch.linalg.vector_norm(x, dim=dim, keepdim=True, dtype=torch.float32)
norm = torch.add(eps, norm, alpha=np.sqrt(norm.numel() / x.numel()))
return x / norm.to(x.dtype)
def get_normalization(name: str, channels: int):
if name == "I":
return nn.Identity()
elif name == "R":
return te.pytorch.RMSNorm(channels, eps=1e-6)
else:
raise ValueError(f"Normalization {name} not found")
class BaseAttentionOp(nn.Module):
def __init__(self):
super().__init__()
class Attention(nn.Module):
"""
Generalized attention impl.
Allowing for both self-attention and cross-attention configurations depending on whether a `context_dim` is provided.
If `context_dim` is None, self-attention is assumed.
Parameters:
query_dim (int): Dimension of each query vector.
context_dim (int, optional): Dimension of each context vector. If None, self-attention is assumed.
heads (int, optional): Number of attention heads. Defaults to 8.
dim_head (int, optional): Dimension of each head. Defaults to 64.
dropout (float, optional): Dropout rate applied to the output of the attention block. Defaults to 0.0.
attn_op (BaseAttentionOp, optional): Custom attention operation to be used instead of the default.
qkv_bias (bool, optional): If True, adds a learnable bias to query, key, and value projections. Defaults to False.
out_bias (bool, optional): If True, adds a learnable bias to the output projection. Defaults to False.
qkv_norm (str, optional): A string representing normalization strategies for query, key, and value projections.
Defaults to "SSI".
qkv_norm_mode (str, optional): A string representing normalization mode for query, key, and value projections.
Defaults to 'per_head'. Only support 'per_head'.
Examples:
>>> attn = Attention(query_dim=128, context_dim=256, heads=4, dim_head=32, dropout=0.1)
>>> query = torch.randn(10, 128) # Batch size of 10
>>> context = torch.randn(10, 256) # Batch size of 10
>>> output = attn(query, context) # Perform the attention operation
Note:
https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
"""
def __init__(
self,
query_dim: int,
context_dim=None,
heads=8,
dim_head=64,
dropout=0.0,
attn_op: Optional[BaseAttentionOp] = None,
qkv_bias: bool = False,
out_bias: bool = False,
qkv_norm: str = "SSI",
qkv_norm_mode: str = "per_head",
backend: str = "transformer_engine",
qkv_format: str = "bshd",
) -> None:
super().__init__()
self.is_selfattn = context_dim is None # self attention
inner_dim = dim_head * heads
context_dim = query_dim if context_dim is None else context_dim
self.heads = heads
self.dim_head = dim_head
self.qkv_norm_mode = qkv_norm_mode
self.qkv_format = qkv_format
if self.qkv_norm_mode == "per_head":
norm_dim = dim_head
else:
raise ValueError(f"Normalization mode {self.qkv_norm_mode} not found, only support 'per_head'")
self.backend = backend
self.to_q = nn.Sequential(
nn.Linear(query_dim, inner_dim, bias=qkv_bias),
get_normalization(qkv_norm[0], norm_dim),
)
self.to_k = nn.Sequential(
nn.Linear(context_dim, inner_dim, bias=qkv_bias),
get_normalization(qkv_norm[1], norm_dim),
)
self.to_v = nn.Sequential(
nn.Linear(context_dim, inner_dim, bias=qkv_bias),
get_normalization(qkv_norm[2], norm_dim),
)
self.to_out = nn.Sequential(
nn.Linear(inner_dim, query_dim, bias=out_bias),
nn.Dropout(dropout),
)
if attn_op: # use what is given
self.attn_op = attn_op
elif self.backend == "transformer_engine":
sequence_parallel = False
self.attn_op: BaseAttentionOp = DotProductAttention(
self.heads,
self.dim_head,
num_gqa_groups=self.heads,
attention_dropout=0,
qkv_format=qkv_format,
attn_mask_type="no_mask",
tp_size=1,
tp_group=None,
sequence_parallel=sequence_parallel,
)
else:
raise ValueError(f"Backend {backend} not found")
def cal_qkv(
self, x, context=None, mask=None, rope_emb=None, **kwargs
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
del kwargs
"""
self.to_q, self.to_k, self.to_v are nn.Sequential with projection + normalization layers.
Before 07/24/2024, these modules normalize across all heads.
After 07/24/2024, to support tensor parallelism and follow the common practice in the community,
we support to normalize per head.
To keep the checkpoint copatibility with the previous code,
we keep the nn.Sequential but call the projection and the normalization layers separately.
We use a flag `self.qkv_norm_mode` to control the normalization behavior.
The default value of `self.qkv_norm_mode` is "per_head", which means we normalize per head.
"""
if self.qkv_norm_mode == "per_head":
q = self.to_q[0](x)
context = x if context is None else context
k = self.to_k[0](context)
v = self.to_v[0](context)
q, k, v = map(
lambda t: rearrange(t, "b ... (n c) -> b ... n c", n=self.heads, c=self.dim_head),
(q, k, v),
)
else:
raise ValueError(f"Normalization mode {self.qkv_norm_mode} not found, only support 'per_head'")
q = self.to_q[1](q)
k = self.to_k[1](k)
v = self.to_v[1](v)
if self.is_selfattn and rope_emb is not None: # only apply to self-attention!
q = apply_rotary_pos_emb(q, rope_emb, tensor_format=self.qkv_format, fused=True)
k = apply_rotary_pos_emb(k, rope_emb, tensor_format=self.qkv_format, fused=True)
return q, k, v
def cal_attn(self, q, k, v, mask=None):
if self.backend == "transformer_engine":
seq_dim = self.qkv_format.index("s")
assert (
q.shape[seq_dim] > 1 and k.shape[seq_dim] > 1
), "Seqlen must be larger than 1 for TE Attention starting with 1.8 TE version."
out = self.attn_op(q, k, v, core_attention_bias_type="no_bias", core_attention_bias=None) # [B, Mq, H, V]
return self.to_out(out)
elif self.backend == "torch":
out = self.attn_op(q, k, v, mask=mask) # [B, Mq, H, V]
return self.to_out(rearrange(out, " b ... n c -> b ... (n c)"))
else:
raise ValueError(f"Backend {self.backend} not found")
def forward(
self,
x,
context=None,
mask=None,
rope_emb=None,
**kwargs,
):
"""
Args:
x (Tensor): The query tensor of shape [B, Mq, K]
context (Optional[Tensor]): The key tensor of shape [B, Mk, K] or use x as context [self attention] if None
"""
q, k, v = self.cal_qkv(x, context, mask, rope_emb=rope_emb, **kwargs)
return self.cal_attn(q, k, v, mask)
|