File size: 14,600 Bytes
8c31d70 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 |
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections import defaultdict
from typing import Optional
import torch
from einops import rearrange
from .ar_config_tokenizer import TokenizerConfig
from .lazy_config_init import instantiate as lazy_instantiate
def update_vocab_size(
existing_vocab_size,
to_be_added_vocab_size,
training_type,
add_special_tokens,
video_special_tokens={},
):
# New vocab size
if add_special_tokens:
existing_vocab_size += to_be_added_vocab_size + len(video_special_tokens)
# For text_to_video, we add one <bov> special token at the beginning of the video
elif training_type == "text_to_video":
existing_vocab_size += to_be_added_vocab_size + 1
else:
existing_vocab_size += to_be_added_vocab_size
return existing_vocab_size
class DiscreteMultimodalTokenizer:
def __init__(self, tokenizer_config: TokenizerConfig):
self.tokenizer_config = tokenizer_config
self.vocab_size = 0
self.total_seq_len = tokenizer_config.seq_len
self.pad_to_multiple_of = tokenizer_config.pad_to_multiple_of
self.training_type = tokenizer_config.training_type
assert self.training_type in [
"text_only",
"text_to_video",
"video_to_video",
"image_text_interleaved",
], f"{self.training_type} not supported"
self._build_text_tokenizer()
self._build_video_tokenizer()
def _build_text_tokenizer(self):
r"""Function to initialize the text tokenizer model."""
if self.tokenizer_config.text_tokenizer is not None:
self.text_tokenizer = lazy_instantiate(self.tokenizer_config.text_tokenizer.config)
self.vocab_size += self.tokenizer_config.text_tokenizer.vocab_size
else:
self.text_tokenizer = None
def _build_video_tokenizer(self):
r"""Function to initialize the video tokenizer model."""
if self.tokenizer_config.video_tokenizer is not None:
self.video_tokenizer = lazy_instantiate(self.tokenizer_config.video_tokenizer.config)
self.video_tokenizer = self.video_tokenizer.to("cuda")
self.video_vocab_size = self.tokenizer_config.video_tokenizer.vocab_size
special_token_offset = (
self.tokenizer_config.video_tokenizer.tokenizer_offset
+ self.tokenizer_config.video_tokenizer.vocab_size
)
self.video_special_tokens = {
"<|begin_of_video|>": special_token_offset,
"<|end_of_video|>": special_token_offset + 1,
"<|pad_token_video|>": special_token_offset + 2,
}
self.vocab_size = update_vocab_size(
existing_vocab_size=self.vocab_size,
to_be_added_vocab_size=self.tokenizer_config.video_tokenizer.vocab_size,
training_type=self.training_type,
add_special_tokens=self.tokenizer_config.add_special_tokens,
video_special_tokens=self.video_special_tokens,
)
else:
self.video_tokenizer = None
@property
def pad_id(self):
r"""Returns the pad_id."""
if self.training_type == "text_only" or self.training_type == "image_text_interleaved":
pad_id = self.text_tokenizer.pad_id
elif self.training_type in ["text_to_video", "video_to_video"]:
pad_id = self.video_special_tokens["<|pad_token_video|>"]
else:
raise ValueError(f"training_type {self.training_type} not defined")
return pad_id
@property
def ignore_index(self):
r"""Returns which token should be ignored during loss computation."""
if self.training_type == "text_only" or self.training_type == "image_text_interleaved":
if self.text_tokenizer.pad_id == self.text_tokenizer.eos_id:
# If the PAD token is the same as the EOS token, we do not ignore it during loss
# computation, since we want the model to be able to predict EOS tokens in inference.
# The PyTorch default ignore_index for the cross-entropy loss is -100.
ignore_index = -100
else:
ignore_index = self.text_tokenizer.pad_id
elif self.training_type in ["text_to_video", "video_to_video"]:
ignore_index = self.pad_id
else:
raise ValueError(f"training_type {self.training_type} not defined")
return ignore_index
@property
def stop_tokens(self):
r"""Returns the stop tokens."""
if self.training_type == "text_only" or self.training_type == "image_text_interleaved":
stop_tokens = self.text_tokenizer.stop_tokens
elif self.training_type in ["text_to_video", "video_to_video"]:
stop_tokens = set([self.video_special_tokens["<|end_of_video|>"]])
else:
raise ValueError(f"training_type {self.training_type} not defined")
return stop_tokens
def _tokenize_text(self, raw_text: list[str], max_text_seq_len: int = -1):
r"""Function to tokenize text.
Args:
raw_text (list[str]): List of input strings
max_text_seq_len (int): Maximum sequence length returned by text tokenizer
Returns:
text_tokens (list[list[int]]): List of text tokens
"""
batch_size = len(raw_text)
text_tokens = [self.text_tokenizer.encode(raw_text[i], bos=True, eos=True) for i in range(batch_size)]
# Clipping the text tokens so that the sequence length does not exceed max_text_seq_len
if max_text_seq_len > -1:
for i in range(len(text_tokens)):
if len(text_tokens[i]) > max_text_seq_len:
# Simply clip and add end of seq token
text_tokens[i] = text_tokens[i][0 : max_text_seq_len - 1] + [self.text_tokenizer.eos_id]
return text_tokens
def _tokenize_class(self, cls_labels: list[str]):
r"""Function to tokenize the class label.
Args:
cls_labels (list[str]): List of class indices
Returns:
class_tokens (list[list[int]]): List of class tokens
"""
# tokenizer_offset tells what offset should be added to the tokens.
# This is needed for vocab expansion.
class_tokens = [[int(x) + self.tokenizer_config.class_tokenizer.tokenizer_offset] for x in cls_labels]
return class_tokens
def _tokenize_video(self, videos: torch.Tensor, pixel_chunk_duration: Optional[int] = None):
r"""Function to tokenize video.
Args:
videos (torch.Tensor): Input video data tensor
pixel_chunk_duration (Optional[float]): Pixel chunk duration. If provided, we pass it to the video tokenizer.
Returns:
video_tokens (list[list[int]]): List of video tokens
"""
video_tokens = []
batch_size = videos.shape[0]
quantized_out, _ = self.video_tokenizer.encode(videos, pixel_chunk_duration=pixel_chunk_duration)
indices = self.video_tokenizer.fsq_quantizer.codes_to_indices(quantized_out.permute(0, 2, 3, 4, 1))
# Flatten the indices
indices = rearrange(indices, "B T H W -> B (T H W)")
# tokenizer_offset tells what offset should be added to the tokens.
# This is needed for vocab expansion.
indices += self.tokenizer_config.video_tokenizer.tokenizer_offset
# Add begin and end of video tokens
bov_token = self.video_special_tokens["<|begin_of_video|>"]
eov_token = self.video_special_tokens["<|end_of_video|>"]
# Append bov and eov tokens
if self.tokenizer_config.add_special_tokens:
for i in range(batch_size):
video_tokens.append([bov_token] + indices[i].tolist() + [eov_token])
else:
if self.training_type == "text_to_video":
for i in range(batch_size):
video_tokens.append([bov_token] + indices[i].tolist())
else:
for i in range(batch_size):
video_tokens.append(indices[i].tolist())
assert (
len(video_tokens[-1]) == self.tokenizer_config.video_tokenizer.max_seq_len
), f"Expected {self.tokenizer_config.video_tokenizer.max_seq_len} tokens, got {len(video_tokens[-1])}; video shape: {videos.shape}"
return video_tokens
def tokenize(self, data_batch: dict):
r"""Function to tokenize data_dict.
Args:
data_batch (dict): Input data dict
Returns:
tokens (torch.LongTensor): Token tensor dict
"""
if (
self.training_type in ["text_only", "image_text_interleaved"]
and not self.tokenizer_config.text_tokenizer.tokenize_here
):
# In case of pre-computed tokens, just return the data_batch
return data_batch["tokens"], None
# Online tokenization
tokens = []
token_boundaries = defaultdict(list)
# Obtain maximum sequence length
max_text_seq_len = -1
max_visual_seq_len = -1
if self.training_type in ["text_to_video", "video_to_video"]:
max_visual_seq_len = self.tokenizer_config.video_tokenizer.max_seq_len
# If max visual sequence length is specified, make sure that text is clipped so that
# the full video/image is always seen.
if max_visual_seq_len > -1:
if self.tokenizer_config.add_special_tokens:
max_visual_seq_len = max_visual_seq_len + 2 # Two special tokens is for [bov, eov] or [boi, eoi] token
elif self.training_type == "text_to_video":
max_visual_seq_len = max_visual_seq_len + 1
else:
max_visual_seq_len = max_visual_seq_len
assert (
max_visual_seq_len <= self.total_seq_len
), f"max_visual_seq_len ({max_visual_seq_len}) is greater that total sequence length ({self.total_seq_len})"
max_text_seq_len = self.total_seq_len - max_visual_seq_len
# Tokenize the text
if (
"text" in self.training_type
and self.text_tokenizer is not None
and self.tokenizer_config.text_tokenizer.tokenize_here
):
key = self.tokenizer_config.text_tokenizer.data_key
batch_size = len(data_batch[key])
assert key in data_batch, f"Key {key} should be present in data for text tokenizer"
tokens = self._tokenize_text(data_batch["caption"], max_text_seq_len)
for i in range(batch_size):
token_boundaries["text"].append((0, len(tokens[i])))
else:
tokens = []
batch_size = None
# Tokenize the class label
if "class" in self.training_type and self.tokenizer_config.class_tokenizer is not None:
key = self.tokenizer_config.class_tokenizer.data_key
assert key in data_batch, f"Key {key} should be present in data for class tokenizer"
batch_size = len(data_batch[key]) if batch_size is None else batch_size
tokens_class = self._tokenize_class(data_batch[key])
if len(tokens) == 0:
tokens = tokens_class
for i in range(batch_size):
token_boundaries["class"].append((0, len(tokens[i])))
else:
for i in range(batch_size):
token_boundaries["class"].append((len(tokens[i]), len(tokens[i]) + len(tokens_class[i])))
tokens[i] = tokens[i] + tokens_class[i]
# Tokenize the video
if self.video_tokenizer is not None and self.tokenizer_config.video_tokenizer.tokenize_here:
key = self.tokenizer_config.video_tokenizer.data_key
assert key in data_batch, f"Key {key} should be present in data for video tokenizer"
batch_size = len(data_batch[key]) if batch_size is None else batch_size
pixel_chunk_duration = (
None # If not specified, we assume it's a video dataset and use the default chunk duration
)
dataset_name = data_batch.get("dataset_name", None)
if dataset_name is not None and dataset_name.startswith("image"):
# If it's an image dataset, we use a pixel chunk duration of 1
pixel_chunk_duration = 1
tokens_video = self._tokenize_video(data_batch[key], pixel_chunk_duration=pixel_chunk_duration)
if len(tokens) == 0:
tokens = tokens_video
for i in range(batch_size):
token_boundaries["video"].append((0, len(tokens[i])))
# [B,] each entry is ((0, len(tokens[i])))
else:
for i in range(batch_size):
token_boundaries["video"].append((len(tokens[i]), len(tokens[i]) + len(tokens_video[i])))
tokens[i] = tokens[i] + tokens_video[i]
# Combine the tokens and do padding
max_seq_len_in_batch = max([len(token) for token in tokens])
if self.pad_to_multiple_of is not None:
# Pad the sequence length to the nearest multiple of pad_to_multiple_of
max_seq_len_in_batch = ((max_seq_len_in_batch - 1) // self.pad_to_multiple_of + 1) * self.pad_to_multiple_of
pad_to_len = min(max_seq_len_in_batch, self.total_seq_len)
for i in range(len(tokens)):
if len(tokens[i]) < pad_to_len:
tokens[i] = tokens[i] + [self.pad_id] * (pad_to_len - len(tokens[i]))
else:
tokens[i] = tokens[i][0:pad_to_len]
# Convert it to long tensor
tokens = torch.LongTensor(tokens)
return tokens, token_boundaries
|