File size: 14,600 Bytes
8c31d70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from collections import defaultdict
from typing import Optional

import torch
from einops import rearrange

from .ar_config_tokenizer import TokenizerConfig
from .lazy_config_init import instantiate as lazy_instantiate


def update_vocab_size(
    existing_vocab_size,
    to_be_added_vocab_size,
    training_type,
    add_special_tokens,
    video_special_tokens={},
):
    # New vocab size
    if add_special_tokens:
        existing_vocab_size += to_be_added_vocab_size + len(video_special_tokens)
    # For text_to_video, we add one <bov> special token at the beginning of the video
    elif training_type == "text_to_video":
        existing_vocab_size += to_be_added_vocab_size + 1
    else:
        existing_vocab_size += to_be_added_vocab_size
    return existing_vocab_size


class DiscreteMultimodalTokenizer:
    def __init__(self, tokenizer_config: TokenizerConfig):
        self.tokenizer_config = tokenizer_config
        self.vocab_size = 0
        self.total_seq_len = tokenizer_config.seq_len
        self.pad_to_multiple_of = tokenizer_config.pad_to_multiple_of
        self.training_type = tokenizer_config.training_type
        assert self.training_type in [
            "text_only",
            "text_to_video",
            "video_to_video",
            "image_text_interleaved",
        ], f"{self.training_type} not supported"

        self._build_text_tokenizer()
        self._build_video_tokenizer()

    def _build_text_tokenizer(self):
        r"""Function to initialize the text tokenizer model."""
        if self.tokenizer_config.text_tokenizer is not None:
            self.text_tokenizer = lazy_instantiate(self.tokenizer_config.text_tokenizer.config)
            self.vocab_size += self.tokenizer_config.text_tokenizer.vocab_size
        else:
            self.text_tokenizer = None

    def _build_video_tokenizer(self):
        r"""Function to initialize the video tokenizer model."""
        if self.tokenizer_config.video_tokenizer is not None:
            self.video_tokenizer = lazy_instantiate(self.tokenizer_config.video_tokenizer.config)
            self.video_tokenizer = self.video_tokenizer.to("cuda")
            self.video_vocab_size = self.tokenizer_config.video_tokenizer.vocab_size
            special_token_offset = (
                self.tokenizer_config.video_tokenizer.tokenizer_offset
                + self.tokenizer_config.video_tokenizer.vocab_size
            )
            self.video_special_tokens = {
                "<|begin_of_video|>": special_token_offset,
                "<|end_of_video|>": special_token_offset + 1,
                "<|pad_token_video|>": special_token_offset + 2,
            }

            self.vocab_size = update_vocab_size(
                existing_vocab_size=self.vocab_size,
                to_be_added_vocab_size=self.tokenizer_config.video_tokenizer.vocab_size,
                training_type=self.training_type,
                add_special_tokens=self.tokenizer_config.add_special_tokens,
                video_special_tokens=self.video_special_tokens,
            )
        else:
            self.video_tokenizer = None

    @property
    def pad_id(self):
        r"""Returns the pad_id."""

        if self.training_type == "text_only" or self.training_type == "image_text_interleaved":
            pad_id = self.text_tokenizer.pad_id
        elif self.training_type in ["text_to_video", "video_to_video"]:
            pad_id = self.video_special_tokens["<|pad_token_video|>"]
        else:
            raise ValueError(f"training_type {self.training_type} not defined")
        return pad_id

    @property
    def ignore_index(self):
        r"""Returns which token should be ignored during loss computation."""
        if self.training_type == "text_only" or self.training_type == "image_text_interleaved":
            if self.text_tokenizer.pad_id == self.text_tokenizer.eos_id:
                # If the PAD token is the same as the EOS token, we do not ignore it during loss
                # computation, since we want the model to be able to predict EOS tokens in inference.
                # The PyTorch default ignore_index for the cross-entropy loss is -100.
                ignore_index = -100
            else:
                ignore_index = self.text_tokenizer.pad_id
        elif self.training_type in ["text_to_video", "video_to_video"]:
            ignore_index = self.pad_id
        else:
            raise ValueError(f"training_type {self.training_type} not defined")
        return ignore_index

    @property
    def stop_tokens(self):
        r"""Returns the stop tokens."""
        if self.training_type == "text_only" or self.training_type == "image_text_interleaved":
            stop_tokens = self.text_tokenizer.stop_tokens
        elif self.training_type in ["text_to_video", "video_to_video"]:
            stop_tokens = set([self.video_special_tokens["<|end_of_video|>"]])
        else:
            raise ValueError(f"training_type {self.training_type} not defined")
        return stop_tokens

    def _tokenize_text(self, raw_text: list[str], max_text_seq_len: int = -1):
        r"""Function to tokenize text.
        Args:
            raw_text (list[str]): List of input strings
            max_text_seq_len (int): Maximum sequence length returned by text tokenizer
        Returns:
            text_tokens (list[list[int]]): List of text tokens
        """

        batch_size = len(raw_text)
        text_tokens = [self.text_tokenizer.encode(raw_text[i], bos=True, eos=True) for i in range(batch_size)]

        # Clipping the text tokens so that the sequence length does not exceed max_text_seq_len
        if max_text_seq_len > -1:
            for i in range(len(text_tokens)):
                if len(text_tokens[i]) > max_text_seq_len:
                    # Simply clip and add end of seq token
                    text_tokens[i] = text_tokens[i][0 : max_text_seq_len - 1] + [self.text_tokenizer.eos_id]
        return text_tokens

    def _tokenize_class(self, cls_labels: list[str]):
        r"""Function to tokenize the class label.
        Args:
            cls_labels (list[str]): List of class indices
        Returns:
            class_tokens (list[list[int]]): List of class tokens
        """

        # tokenizer_offset tells what offset should be added to the tokens.
        # This is needed for vocab expansion.
        class_tokens = [[int(x) + self.tokenizer_config.class_tokenizer.tokenizer_offset] for x in cls_labels]

        return class_tokens

    def _tokenize_video(self, videos: torch.Tensor, pixel_chunk_duration: Optional[int] = None):
        r"""Function to tokenize video.
        Args:
            videos (torch.Tensor): Input video data tensor
            pixel_chunk_duration (Optional[float]): Pixel chunk duration. If provided, we pass it to the video tokenizer.
        Returns:
            video_tokens (list[list[int]]): List of video tokens
        """

        video_tokens = []
        batch_size = videos.shape[0]

        quantized_out, _ = self.video_tokenizer.encode(videos, pixel_chunk_duration=pixel_chunk_duration)
        indices = self.video_tokenizer.fsq_quantizer.codes_to_indices(quantized_out.permute(0, 2, 3, 4, 1))

        # Flatten the indices
        indices = rearrange(indices, "B T H W -> B (T H W)")

        # tokenizer_offset tells what offset should be added to the tokens.
        # This is needed for vocab expansion.
        indices += self.tokenizer_config.video_tokenizer.tokenizer_offset

        # Add begin and end of video tokens
        bov_token = self.video_special_tokens["<|begin_of_video|>"]
        eov_token = self.video_special_tokens["<|end_of_video|>"]

        # Append bov and eov tokens
        if self.tokenizer_config.add_special_tokens:
            for i in range(batch_size):
                video_tokens.append([bov_token] + indices[i].tolist() + [eov_token])
        else:
            if self.training_type == "text_to_video":
                for i in range(batch_size):
                    video_tokens.append([bov_token] + indices[i].tolist())
            else:
                for i in range(batch_size):
                    video_tokens.append(indices[i].tolist())
                    assert (
                        len(video_tokens[-1]) == self.tokenizer_config.video_tokenizer.max_seq_len
                    ), f"Expected {self.tokenizer_config.video_tokenizer.max_seq_len} tokens, got {len(video_tokens[-1])}; video shape: {videos.shape}"

        return video_tokens

    def tokenize(self, data_batch: dict):
        r"""Function to tokenize data_dict.
        Args:
            data_batch (dict): Input data dict
        Returns:
            tokens (torch.LongTensor): Token tensor dict
        """

        if (
            self.training_type in ["text_only", "image_text_interleaved"]
            and not self.tokenizer_config.text_tokenizer.tokenize_here
        ):
            # In case of pre-computed tokens, just return the data_batch
            return data_batch["tokens"], None

        # Online tokenization
        tokens = []
        token_boundaries = defaultdict(list)

        # Obtain maximum sequence length
        max_text_seq_len = -1
        max_visual_seq_len = -1

        if self.training_type in ["text_to_video", "video_to_video"]:
            max_visual_seq_len = self.tokenizer_config.video_tokenizer.max_seq_len

        # If max visual sequence length is specified, make sure that text is clipped so that
        # the full video/image is always seen.
        if max_visual_seq_len > -1:
            if self.tokenizer_config.add_special_tokens:
                max_visual_seq_len = max_visual_seq_len + 2  # Two special tokens is for [bov, eov] or [boi, eoi] token
            elif self.training_type == "text_to_video":
                max_visual_seq_len = max_visual_seq_len + 1
            else:
                max_visual_seq_len = max_visual_seq_len
            assert (
                max_visual_seq_len <= self.total_seq_len
            ), f"max_visual_seq_len ({max_visual_seq_len}) is greater that total sequence length ({self.total_seq_len})"
            max_text_seq_len = self.total_seq_len - max_visual_seq_len

        # Tokenize the text
        if (
            "text" in self.training_type
            and self.text_tokenizer is not None
            and self.tokenizer_config.text_tokenizer.tokenize_here
        ):
            key = self.tokenizer_config.text_tokenizer.data_key
            batch_size = len(data_batch[key])
            assert key in data_batch, f"Key {key} should be present in data for text tokenizer"
            tokens = self._tokenize_text(data_batch["caption"], max_text_seq_len)

            for i in range(batch_size):
                token_boundaries["text"].append((0, len(tokens[i])))
        else:
            tokens = []
            batch_size = None

        # Tokenize the class label
        if "class" in self.training_type and self.tokenizer_config.class_tokenizer is not None:
            key = self.tokenizer_config.class_tokenizer.data_key
            assert key in data_batch, f"Key {key} should be present in data for class tokenizer"
            batch_size = len(data_batch[key]) if batch_size is None else batch_size
            tokens_class = self._tokenize_class(data_batch[key])
            if len(tokens) == 0:
                tokens = tokens_class
                for i in range(batch_size):
                    token_boundaries["class"].append((0, len(tokens[i])))
            else:
                for i in range(batch_size):
                    token_boundaries["class"].append((len(tokens[i]), len(tokens[i]) + len(tokens_class[i])))
                    tokens[i] = tokens[i] + tokens_class[i]

        # Tokenize the video
        if self.video_tokenizer is not None and self.tokenizer_config.video_tokenizer.tokenize_here:
            key = self.tokenizer_config.video_tokenizer.data_key
            assert key in data_batch, f"Key {key} should be present in data for video tokenizer"
            batch_size = len(data_batch[key]) if batch_size is None else batch_size

            pixel_chunk_duration = (
                None  # If not specified, we assume it's a video dataset and use the default chunk duration
            )
            dataset_name = data_batch.get("dataset_name", None)
            if dataset_name is not None and dataset_name.startswith("image"):
                # If it's an image dataset, we use a pixel chunk duration of 1
                pixel_chunk_duration = 1
            tokens_video = self._tokenize_video(data_batch[key], pixel_chunk_duration=pixel_chunk_duration)
            if len(tokens) == 0:
                tokens = tokens_video
                for i in range(batch_size):
                    token_boundaries["video"].append((0, len(tokens[i])))
                    # [B,] each entry is ((0, len(tokens[i])))
            else:
                for i in range(batch_size):
                    token_boundaries["video"].append((len(tokens[i]), len(tokens[i]) + len(tokens_video[i])))
                    tokens[i] = tokens[i] + tokens_video[i]

        # Combine the tokens and do padding
        max_seq_len_in_batch = max([len(token) for token in tokens])
        if self.pad_to_multiple_of is not None:
            # Pad the sequence length to the nearest multiple of pad_to_multiple_of
            max_seq_len_in_batch = ((max_seq_len_in_batch - 1) // self.pad_to_multiple_of + 1) * self.pad_to_multiple_of
        pad_to_len = min(max_seq_len_in_batch, self.total_seq_len)
        for i in range(len(tokens)):
            if len(tokens[i]) < pad_to_len:
                tokens[i] = tokens[i] + [self.pad_id] * (pad_to_len - len(tokens[i]))
            else:
                tokens[i] = tokens[i][0:pad_to_len]

        # Convert it to long tensor
        tokens = torch.LongTensor(tokens)
        return tokens, token_boundaries