File size: 5,262 Bytes
8c31d70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Optional

import attrs

from .discrete_video import DiscreteVideoFSQStateDictTokenizer
from .ar_networks import CausalDiscreteVideoTokenizer
from .lazy_config_init import LazyCall as L
from .lazy_config_init import LazyDict


def create_discrete_video_fsq_tokenizer_state_dict_config(
    ckpt_path, pixel_chunk_duration=33, compression_ratio=[8, 16, 16]
) -> LazyDict:
    CausalDiscreteFactorizedVideoTokenizerConfig: LazyDict = L(CausalDiscreteVideoTokenizer)(
        # The new causal discrete tokenizer, that is at least 2x more efficient in memory and runtime.
        # - It relies on fully 3D discrete wavelet transform
        # - Uses a layer norm instead of a group norm
        # - Factorizes full convolutions into spatial and temporal convolutions
        # - Factorizes full attention into spatial and temporal attention
        # - Strictly causal, with flexible temporal length at inference.
        attn_resolutions=[32],
        channels=128,
        channels_mult=[2, 4, 4],
        dropout=0.0,
        in_channels=3,
        num_res_blocks=2,
        out_channels=3,
        resolution=1024,
        patch_size=4,
        patch_method="haar",
        z_channels=16,
        z_factor=1,
        num_groups=1,
        legacy_mode=False,
        spatial_compression=16,
        temporal_compression=8,
        embedding_dim=6,
        levels=[8, 8, 8, 5, 5, 5],
        name="CausalDiscreteFactorizedVideoTokenizer",
    )

    return L(DiscreteVideoFSQStateDictTokenizer)(
        enc_fp=ckpt_path.replace("ema.jit", "encoder.jit"),
        dec_fp=ckpt_path.replace("ema.jit", "decoder.jit"),
        tokenizer_module=CausalDiscreteFactorizedVideoTokenizerConfig,
        name="discrete_video_fsq",
        latent_ch=6,
        is_bf16=True,
        pixel_chunk_duration=pixel_chunk_duration,
        latent_chunk_duration=1 + (pixel_chunk_duration - 1) // compression_ratio[0],
        max_enc_batch_size=8,
        max_dec_batch_size=4,
        levels=[8, 8, 8, 5, 5, 5],
        compression_ratio=compression_ratio,
    )


@attrs.define(slots=False)
class TextTokenizerConfig:
    """
    Text tokenizer config

    Args:
        config: Config file to define the text tokenizer class.
        data_key (str): The input key from data_dict that will be passed to the text tokenizer.
        tokenize_here (bool): Whether to use the tokenizer to perform online tokenization.
        tokenizer_offset (int): Offset that is added to the tokens.
        vocab_size (int): Vocabulary size of the tokenizer.
    """

    config: LazyDict
    data_key: str = ""
    tokenize_here: bool = False
    tokenizer_offset: int = 0
    vocab_size: int = 0


@attrs.define(slots=False)
class VideoTokenizerConfig:
    """
    Video tokenizer config

    Args:
        config: Config file to define the video tokenizer class.
        data_key (str): The input key from data_dict that will be passed to the video tokenizer.
        tokenize_here (bool): Whether to use the tokenizer to perform online tokenization.
        tokenizer_offset (int): Offset that is added to the tokens. In case of joint text-video tokenizers, we
            add an offset to make sure that video tokens and text tokens don't overlap.
        vocab_size (int): Vocabulary size of the tokenizer.
        max_seq_len (int): Maximum token length for an input video.
    """

    config: LazyDict
    data_key: str = ""
    tokenize_here: bool = True
    tokenizer_offset: int = 0
    vocab_size: int = 0
    max_seq_len: int = -1


@attrs.define(slots=False)
class TokenizerConfig:
    """
    Joint tokenizer config

    Args:
        text_tokenizer (TextTokenizerConfig): Text tokenizer config file
        class_tokenizer (ClassTokenizerConfig): Class tokenizer config file
        video_tokenizer (VideoTokenizerConfig): Video tokenizer config file
        image_tokenizer (ImageTokenizerConfig): Image tokenizer config file
        seq_len (int): Final token sequence length
        training_type (str): Type of training we use. Supports ["text_only", "text_to_video", "class_to_image", "image_text_interleaved"]
        add_special_tokens (bool): Whether to add special tokens to the output tokens
        pad_to_multiple_of (int): Pad the token sequence length to the nearest multiple of this number. Defaults to 64.
    """

    text_tokenizer: Optional[TextTokenizerConfig] = None
    video_tokenizer: Optional[VideoTokenizerConfig] = None
    seq_len: int = 4096
    training_type: str = None
    add_special_tokens: bool = True
    pad_to_multiple_of: Optional[int] = 64