File size: 8,443 Bytes
4e91f27
8c31d70
4e91f27
8c31d70
 
 
4e91f27
8c31d70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e91f27
8c31d70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e91f27
 
 
 
 
 
 
 
 
 
 
8c31d70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
## How to Use

```python
from transformers import AutoModel

model = AutoModel.from_pretrained(
    "Nvidia-CMU25/DiffusionText2WorldGeneration", 
    cache_dir="./cache", 
    trust_remote_code=True, 
    # turn on offloading on a low GPU memory machine:
    # offload_network=True,
    # offload_tokenizer=True,
    # offload_text_encoder_model=True,
    # offload_prompt_upsampler=True,
    # offload_guardrail_models=True,
)
prompt = "Some text prompt to generate a video"
model(prompt)
```

![Cosmos Logo](https://github.com/NVIDIA/Cosmos/raw/main/assets/cosmos-logo.png)

--------------------------------------------------------------------------------

### [Website](https://www.nvidia.com/en-us/ai/cosmos/) | [HuggingFace](https://huggingface.co/collections/nvidia/cosmos-6751e884dc10e013a0a0d8e6) | [GPU-free Preview](https://build.nvidia.com/explore/discover) | [Paper](https://arxiv.org/abs/2501.03575) | [Paper Website](https://research.nvidia.com/labs/dir/cosmos1/)

[NVIDIA Cosmos](https://www.nvidia.com/cosmos/) is a developer-first world foundation model platform designed to help Physical AI developers build their Physical AI systems better and faster. Cosmos contains

1. pre-trained models, available via [Hugging Face](https://huggingface.co/collections/nvidia/cosmos-6751e884dc10e013a0a0d8e6) under the [NVIDIA Open Model License](https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-open-model-license/) that allows commercial use of the models for free
2. training scripts under the [Apache 2 License](https://www.apache.org/licenses/LICENSE-2.0), offered through [NVIDIA Nemo Framework](https://github.com/NVIDIA/NeMo) for post-training the models for various downstream Physical AI applications

Details of the platform is described in the [Cosmos paper](https://research.nvidia.com/publication/2025-01_cosmos-world-foundation-model-platform-physical-ai). Preview access is avaiable at [build.nvidia.com](https://build.nvidia.com).

## Key Features

- [Pre-trained Diffusion-based world foundation models](cosmos1/models/diffusion/README.md) for Text2World and Video2World generation where a user can generate visual simulation based on text prompts and video prompts.
- [Pre-trained Autoregressive-based world foundation models](cosmos1/models/autoregressive/README.md) for Video2World generation where a user can generate visual simulation based on video prompts and optional text prompts.
- [Video tokenizers](https://github.com/NVIDIA/Cosmos-Tokenizer) for tokenizing videos into continuous tokens (latent vectors) and discrete tokens (integers) efficiently and effectively.
- Video curation pipeline for building your own video dataset. [Coming soon]
- [Post-training scripts](cosmos1/models/POST_TRAINING.md) via NeMo Framework to post-train the pre-trained world foundation models for various Physical AI setup.
- Pre-training scripts via NeMo Framework for building your own world foundation model. [[Diffusion](https://github.com/NVIDIA/NeMo/tree/main/nemo/collections/diffusion)] [[Autoregressive](https://github.com/NVIDIA/NeMo/tree/main/nemo/collections/multimodal_autoregressive)] [[Tokenizer](https://github.com/NVIDIA/NeMo/tree/main/nemo/collections/diffusion/vae)].

## Model Family

| Model name                                                                                                           | Description                                              | Try it out                                           |
| -------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------- | ---------------------------------------------------- |
| [Cosmos-1.0-Diffusion-7B-Text2World](https://huggingface.co/nvidia/Cosmos-1.0-Diffusion-7B-Text2World)               | Text to visual world generation                          | [Inference](cosmos1/models/diffusion/README.md)      |
| [Cosmos-1.0-Diffusion-14B-Text2World](https://huggingface.co/nvidia/Cosmos-1.0-Diffusion-14B-Text2World)             | Text to visual world generation                          | [Inference](cosmos1/models/diffusion/README.md)      |
| [Cosmos-1.0-Diffusion-7B-Video2World](https://huggingface.co/nvidia/Cosmos-1.0-Diffusion-7B-Video2World)             | Video + Text based future visual world generation        | [Inference](cosmos1/models/diffusion/README.md)      |
| [Cosmos-1.0-Diffusion-14B-Video2World](https://huggingface.co/nvidia/Cosmos-1.0-Diffusion-14B-Video2World)           | Video + Text based future visual world generation        | [Inference](cosmos1/models/diffusion/README.md)      |
| [Cosmos-1.0-Autoregressive-4B](https://huggingface.co/nvidia/Cosmos-1.0-Autoregressive-4B)                           | Future visual world generation                           | [Inference](cosmos1/models/autoregressive/README.md) |
| [Cosmos-1.0-Autoregressive-12B](https://huggingface.co/nvidia/Cosmos-1.0-Autoregressive-12B)                         | Future visual world generation                           | [Inference](cosmos1/models/autoregressive/README.md) |
| [Cosmos-1.0-Autoregressive-5B-Video2World](https://huggingface.co/nvidia/Cosmos-1.0-Autoregressive-5B-Video2World)   | Video + Text based future visual world generation        | [Inference](cosmos1/models/autoregressive/README.md) |
| [Cosmos-1.0-Autoregressive-13B-Video2World](https://huggingface.co/nvidia/Cosmos-1.0-Autoregressive-13B-Video2World) | Video + Text based future visual world generation        | [Inference](cosmos1/models/autoregressive/README.md) |
| [Cosmos-1.0-Guardrail](https://huggingface.co/nvidia/Cosmos-1.0-Guardrail)                                           | Guardrail contains pre-Guard and post-Guard for safe use | Embedded in model inference scripts                  |

## Example Usage

### Inference

Follow the [Cosmos Installation Guide](INSTALL.md) to setup the docker. For inference with the pretrained models, please refer to [Cosmos Diffusion Inference](cosmos1/models/diffusion/README.md) and [Cosmos Autoregressive Inference](cosmos1/models/autoregressive/README.md).

The code snippet below provides a gist of the inference usage.

```bash
PROMPT="A sleek, humanoid robot stands in a vast warehouse filled with neatly stacked cardboard boxes on industrial shelves. \
The robot's metallic body gleams under the bright, even lighting, highlighting its futuristic design and intricate joints. \
A glowing blue light emanates from its chest, adding a touch of advanced technology. The background is dominated by rows of boxes, \
suggesting a highly organized storage system. The floor is lined with wooden pallets, enhancing the industrial setting. \
The camera remains static, capturing the robot's poised stance amidst the orderly environment, with a shallow depth of \
field that keeps the focus on the robot while subtly blurring the background for a cinematic effect."

# Example using 7B model
PYTHONPATH=$(pwd) python cosmos1/models/diffusion/inference/text2world.py \
    --checkpoint_dir checkpoints \
    --diffusion_transformer_dir Cosmos-1.0-Diffusion-7B-Text2World \
    --prompt "$PROMPT" \
    --offload_prompt_upsampler \
    --video_save_name Cosmos-1.0-Diffusion-7B-Text2World
```

<video src="https://github.com/user-attachments/assets/db7bebfe-5314-40a6-b045-4f6ce0a87f2a">
  Your browser does not support the video tag.
</video>

We also offer [multi-GPU inference](cosmos1/models/diffusion/nemo/inference/README.md) support for Diffusion Text2World WFM models through NeMo Framework.

### Post-training

NeMo Framework provides GPU accelerated post-training with general post-training for both [diffusion](cosmos1/models/diffusion/nemo/post_training/README.md) and [autoregressive](cosmos1/models/autoregressive/nemo/post_training/README.md) models, with other types of post-training coming soon.

## License and Contact

This project will download and install additional third-party open source software projects. Review the license terms of these open source projects before use.

NVIDIA Cosmos source code is released under the [Apache 2 License](https://www.apache.org/licenses/LICENSE-2.0).

NVIDIA Cosmos models are released under the [NVIDIA Open Model License](https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-open-model-license). For a custom license, please contact [[email protected]](mailto:[email protected]).