File size: 14,370 Bytes
13a8699 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 |
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import numpy as np
import torch
from huggingface_hub import snapshot_download
from megatron.core.tensor_parallel.random import model_parallel_cuda_manual_seed
from nemo import lightning as nl
from nemo.lightning.megatron_parallel import MegatronParallel
MegatronParallel.init_ddp = lambda self: None
from nemo.collections.diffusion.mcore_parallel_utils import Utils
from nemo.collections.diffusion.sampler.conditioner import VideoConditioner
from nemo.collections.diffusion.sampler.conditioner_configs import (
FPSConfig,
ImageSizeConfig,
NumFramesConfig,
PaddingMaskConfig,
TextConfig,
)
from nemo.collections.diffusion.sampler.cosmos.cosmos_diffusion_pipeline import CosmosDiffusionPipeline
from transformers import T5EncoderModel, T5TokenizerFast
from cosmos1.models.diffusion.nemo.inference.inference_utils import process_prompt, save_video
from .log import log
EXAMPLE_PROMPT = (
"The teal robot is cooking food in a kitchen. Steam rises from a simmering pot "
"as the robot chops vegetables on a worn wooden cutting board. Copper pans hang "
"from an overhead rack, catching glints of afternoon light, while a well-loved "
"cast iron skillet sits on the stovetop next to scattered measuring spoons and "
"a half-empty bottle of olive oil."
)
def parse_args():
parser = argparse.ArgumentParser(description="Video foundation model inference")
parser.add_argument(
"--model",
type=str,
default="Cosmos-1.0-Diffusion-7B-Text2World",
choices=["Cosmos-1.0-Diffusion-7B-Text2World", "Cosmos-1.0-Diffusion-14B-Text2World"],
)
parser.add_argument(
"--prompt",
type=str,
default=EXAMPLE_PROMPT,
help="Prompt which the sampled video condition on",
)
# We turn on negative prompt by default. set to "" to turn it off.
parser.add_argument(
"--negative_prompt",
type=str,
default=(
"The video captures a series of frames showing ugly scenes, static with no motion, motion blur, "
"over-saturation, shaky footage, low resolution, grainy texture, pixelated images, poorly lit areas, "
"underexposed and overexposed scenes, poor color balance, washed out colors, choppy sequences, "
"jerky movements, low frame rate, artifacting, color banding, unnatural transitions, outdated special effects, "
"fake elements, unconvincing visuals, poorly edited content, jump cuts, visual noise, and flickering. "
"Overall, the video is of poor quality."
),
help="Negative prompt which the sampled video condition on",
)
parser.add_argument("--subject_name", type=str, default="", help="Name of fine-tuned subject")
parser.add_argument("--guidance", type=float, default=7, help="Classifier-free guidance scale")
parser.add_argument("--sampler", type=str, default="RES", help="Currently only supports RES sampler.")
parser.add_argument("--video_save_path", type=str, default="outputs", help="Path to save the video")
parser.add_argument("--fps", type=int, default=24, help="FPS of the sampled video")
parser.add_argument("--height", type=int, default=704, help="Height of image to sample")
parser.add_argument("--width", type=int, default=1280, help="Width of image to sample")
parser.add_argument("--seed", type=int, default=1, help="Random seed")
parser.add_argument("--num_devices", type=int, default=1, help="Number of devices for inference")
parser.add_argument("--cp_size", type=int, default=1, help="Number of cp ranks for multi-gpu inference.")
parser.add_argument("--num_steps", type=float, default=35, help="Number of diffusion sampling steps")
parser.add_argument("--num_video_frames", type=int, default=121, help="Number of video frames to sample")
parser.add_argument("--tokenizer_dir", type=str, default="", help="Directory for video tokenizer")
parser.add_argument("--cosmos_assets_dir", type=str, default="", help="Directory containing cosmos assets")
parser.add_argument("--prompt_upsampler_dir", type=str, default="", help="Prompt upsampler weights directory")
parser.add_argument("--guardrail_dir", type=str, default="", help="Guardrails weights directory")
parser.add_argument("--nemo_checkpoint", type=str, default="", help="Video diffusion model nemo weights")
parser.add_argument("--t5_cache_dir", type=str, default=None, help="Path to T5 model")
parser.add_argument(
"--enable_prompt_upsampler", action="store_true", help="Whether to use prompt upsampling before generation"
)
args = parser.parse_args()
return args
def print_rank_0(string: str):
rank = torch.distributed.get_rank()
if rank == 0:
log.info(string)
@torch.no_grad()
def encode_for_batch(tokenizer: T5TokenizerFast, encoder: T5EncoderModel, prompts: list[str], max_length: int = 512):
"""
Encode a batch of text prompts to a batch of T5 embeddings.
Parameters:
tokenizer: T5 embedding tokenizer.
encoder: T5 embedding text encoder.
prompts: A batch of text prompts.
max_length: Sequence length of text embedding (defaults to 512).
"""
batch_encoding = tokenizer.batch_encode_plus(
prompts,
return_tensors="pt",
truncation=True,
padding="max_length",
max_length=max_length,
return_length=True,
return_offsets_mapping=False,
)
# We expect all the processing is done on GPU.
input_ids = batch_encoding.input_ids.cuda()
attn_mask = batch_encoding.attention_mask.cuda()
outputs = encoder(input_ids=input_ids, attention_mask=attn_mask)
encoded_text = outputs.last_hidden_state
lengths = attn_mask.sum(dim=1).cpu()
for batch_id in range(encoded_text.shape[0]):
encoded_text[batch_id][lengths[batch_id] :] = 0
return encoded_text
def init_video_tokenizer(args):
"""
Initializes video tokenizer based on specified video tokenizer config / path.
"""
from nemo.collections.diffusion.models.model import DiT7BConfig, DiT14BConfig
vae_path = os.path.join(args.cosmos_assets_dir, args.tokenizer_dir)
if "7b" in args.nemo_checkpoint.lower():
dit_config = DiT7BConfig(vae_path=vae_path)
if "14b" in args.nemo_checkpoint.lower():
dit_config = DiT14BConfig(vae_path=vae_path)
vae = dit_config.configure_vae()
return vae
def check_prompt(args):
prompt = args.prompt
subject_string = None
if args.subject_name:
subject_string = f"A video of sks {args.subject_name}"
prompt = process_prompt(
prompt=prompt,
checkpoint_dir=args.cosmos_assets_dir,
prompt_upsampler_dir=args.prompt_upsampler_dir,
guardrails_dir=args.guardrail_dir,
enable_prompt_upsampler=args.enable_prompt_upsampler,
)
if subject_string:
prompt = f"{subject_string}. {prompt}"
return prompt
def prepare_data_batch(args, vae, t5_embeding_max_length=512):
tokenizer = T5TokenizerFast.from_pretrained("google-t5/t5-11b", cache_dir=args.t5_cache_dir)
text_encoder = T5EncoderModel.from_pretrained("google-t5/t5-11b", cache_dir=args.t5_cache_dir)
text_encoder.to("cuda")
text_encoder.eval()
# Encode text to T5 embedding
out = encode_for_batch(tokenizer, text_encoder, [args.prompt])[0]
encoded_text = torch.tensor(out, dtype=torch.bfloat16)
# Padding T5 embedding to t5_embeding_max_length
L, C = encoded_text.shape
t5_embed = torch.zeros(1, t5_embeding_max_length, C, dtype=torch.bfloat16)
t5_embed[0, :L] = encoded_text
if args.negative_prompt:
out = encode_for_batch(tokenizer, text_encoder, [args.negative_prompt])[0]
encoded_text = torch.tensor(out, dtype=torch.bfloat16)
# Padding T5 embedding to t5_embeding_max_length
L, C = encoded_text.shape
neg_t5_embed = torch.zeros(1, t5_embeding_max_length, C, dtype=torch.bfloat16)
neg_t5_embed[0, :L] = encoded_text
else:
neg_t5_embed = None
# Prepare data sample
t, h, w = args.num_video_frames, args.height, args.width
state_shape = [
vae.channel,
vae.get_latent_num_frames(t),
h // vae.spatial_compression_factor,
w // vae.spatial_compression_factor,
]
data_batch = {
"video": torch.zeros((1, 3, t, h, w), dtype=torch.uint8).cuda(),
"t5_text_embeddings": t5_embed,
"t5_text_mask": torch.ones(1, t5_embeding_max_length, dtype=torch.bfloat16).cuda(),
# other conditions
"image_size": torch.tensor(
[[args.height, args.width, args.height, args.width]] * 1, dtype=torch.bfloat16
).cuda(),
"fps": torch.tensor([args.fps] * 1, dtype=torch.bfloat16).cuda(),
"num_frames": torch.tensor([args.num_video_frames] * 1, dtype=torch.bfloat16).cuda(),
"padding_mask": torch.zeros((1, 1, args.height, args.width), dtype=torch.bfloat16).cuda(),
}
if args.negative_prompt:
data_batch["neg_t5_text_embeddings"] = neg_t5_embed
data_batch["neg_t5_text_mask"] = torch.ones(1, t5_embeding_max_length, dtype=torch.bfloat16)
return data_batch, state_shape
def setup_diffusion_pipeline(args):
"""
Initialize DiT model, parallel strategy, and diffusion pipeline for inference.
"""
# Initialize DiT model
from nemo.collections.diffusion.models.model import DiT7BConfig, DiT14BConfig, DiTModel
if "7b" in args.nemo_checkpoint.lower():
dit_config = DiT7BConfig()
if "14b" in args.nemo_checkpoint.lower():
dit_config = DiT14BConfig()
dit_model = DiTModel(dit_config)
# Initialize model parallel strategy. Here, we only use context parallel.
strategy = nl.MegatronStrategy(
tensor_model_parallel_size=1,
pipeline_model_parallel_size=1,
context_parallel_size=args.cp_size,
pipeline_dtype=torch.bfloat16,
)
# Initialize ptl trainer
trainer = nl.Trainer(
devices=args.num_devices, # you can change the numebr of devices to suit your setup
max_steps=1,
accelerator="gpu",
strategy=strategy,
plugins=nl.MegatronMixedPrecision(precision="bf16-mixed"),
)
# Convert trainer to fabric for inference
fabric = trainer.to_fabric()
fabric.strategy.checkpoint_io.save_ckpt_format = "zarr"
fabric.strategy.checkpoint_io.validate_access_integrity = False
model = fabric.load_model(args.nemo_checkpoint, dit_model).to(device="cuda", dtype=torch.bfloat16)
# Set up diffusion pipeline
conditioner = VideoConditioner(
text=TextConfig(),
fps=FPSConfig(),
num_frames=NumFramesConfig(),
image_size=ImageSizeConfig(),
padding_mask=PaddingMaskConfig(),
)
diffusion_pipeline = CosmosDiffusionPipeline(
net=model.module, conditioner=conditioner, sampler_type=args.sampler, seed=args.seed
)
return diffusion_pipeline
def run_diffusion_inference(args, data_batch, state_shape, vae, diffusion_pipeline):
# prepare data
data_batch = {k: v.cuda() if torch.is_tensor(v) else v for k, v in data_batch.items()}
data_batch["inference_fwd"] = True
sample = diffusion_pipeline.generate_samples_from_batch(
data_batch,
guidance=args.guidance,
state_shape=state_shape,
num_steps=args.num_steps,
is_negative_prompt=True if "neg_t5_text_embeddings" in data_batch else False,
)
rank = torch.distributed.get_rank()
if rank == 0:
# Post-processing and save video
sigma_data = 0.5
grid = (1.0 + vae.decode(sample / sigma_data)).clamp(0, 2) / 2
grid = (grid[0].permute(1, 2, 3, 0) * 255).to(torch.uint8).cpu().numpy().astype(np.uint8)
save_video(
grid=grid,
fps=args.fps,
H=args.height,
W=args.width,
video_save_quality=5,
video_save_path=args.video_save_path,
checkpoint_dir=args.cosmos_assets_dir,
guardrails_dir=args.guardrail_dir,
)
print_rank_0(f"saved video to {args.video_save_path}!")
def main(args):
if args.guardrail_dir == "":
args.guardrail_dir = snapshot_download("nvidia/Cosmos-1.0-Guardrail")
if args.tokenizer_dir == "":
args.tokenizer_dir = snapshot_download("nvidia/Cosmos-1.0-Tokenizer-CV8x8x8")
if args.prompt_upsampler_dir == "" and args.enable_prompt_upsampler:
args.prompt_upsampler_dir = snapshot_download("nvidia/Cosmos-1.0-Prompt-Upsampler-12B-Text2World")
if args.nemo_checkpoint == "":
args.nemo_checkpoint = snapshot_download(f"nvidia/{args.model}", allow_patterns=["nemo/*"])
args.nemo_checkpoint = os.path.join(args.nemo_checkpoint, "nemo")
# Initialize megatron model parallel environment
Utils.initialize_distributed(1, 1, context_parallel_size=args.cp_size)
model_parallel_cuda_manual_seed(args.seed)
args.prompt = check_prompt(args)
# Load video tokenizer
print_rank_0("initializing video tokenizer...")
vae = init_video_tokenizer(args)
# Prepare data batch
print_rank_0("preparing data batch...")
data_batch, state_shape = prepare_data_batch(args, vae)
# Setup model / diffusion pipeline
print_rank_0("setting up diffusion pipeline...")
diffusion_pipeline = setup_diffusion_pipeline(args)
# Generate video from prompt
print_rank_0("generating video...")
run_diffusion_inference(args, data_batch, state_shape, vae, diffusion_pipeline)
if __name__ == "__main__":
args = parse_args()
main(args)
|