File size: 13,370 Bytes
13a8699 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 |
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import json
import math
import os
from pathlib import Path
from typing import List
import numpy as np
import torch
import torchvision
from PIL import Image
from inference_config import SamplingConfig
from .log import log
_IMAGE_EXTENSIONS = [".png", ".jpg", ".jpeg", "webp"]
_VIDEO_EXTENSIONS = [".mp4"]
_SUPPORTED_CONTEXT_LEN = [1, 9] # Input frames
NUM_TOTAL_FRAMES = 33
def add_common_arguments(parser):
"""Add common command line arguments.
Args:
parser (ArgumentParser): Argument parser to add arguments to
"""
parser.add_argument(
"--checkpoint_dir", type=str, default="checkpoints", help="Base directory containing model checkpoints"
)
parser.add_argument(
"--video_save_name",
type=str,
default="output",
help="Output filename for generating a single video",
)
parser.add_argument("--video_save_folder", type=str, default="outputs/", help="Output folder for saving videos")
parser.add_argument(
"--input_image_or_video_path",
type=str,
help="Input path for input image or video",
)
parser.add_argument(
"--batch_input_path",
type=str,
help="Input folder containing all input images or videos",
)
parser.add_argument(
"--num_input_frames",
type=int,
default=9,
help="Number of input frames for world generation",
choices=_SUPPORTED_CONTEXT_LEN,
)
parser.add_argument("--temperature", type=float, default=1.0, help="Temperature for sampling")
parser.add_argument("--top_p", type=float, default=0.8, help="Top-p value for sampling")
parser.add_argument("--seed", type=int, default=0, help="Random seed")
parser.add_argument("--disable_diffusion_decoder", action="store_true", help="Disable diffusion decoder")
parser.add_argument(
"--offload_guardrail_models",
action="store_true",
help="Offload guardrail models after inference",
)
parser.add_argument(
"--offload_diffusion_decoder",
action="store_true",
help="Offload diffusion decoder after inference",
)
parser.add_argument(
"--offload_ar_model",
action="store_true",
help="Offload AR model after inference",
)
parser.add_argument(
"--offload_tokenizer",
action="store_true",
help="Offload discrete tokenizer model after inference",
)
def validate_args(args: argparse.Namespace, inference_type: str):
"""Validate command line arguments for base and video2world generation."""
assert inference_type in [
"base",
"video2world",
], "Invalid inference_type, must be 'base' or 'video2world'"
if args.input_type in ["image", "text_and_image"] and args.num_input_frames != 1:
args.num_input_frames = 1
log.info(f"Set num_input_frames to 1 for {args.input_type} input")
if args.num_input_frames == 1:
if "4B" in args.ar_model_dir:
log.warning(
"The failure rate for 4B model with image input is ~15%. 12B / 13B model have a smaller failure rate. Please be cautious and refer to README.md for more details."
)
elif "5B" in args.ar_model_dir:
log.warning(
"The failure rate for 5B model with image input is ~7%. 12B / 13B model have a smaller failure rate. Please be cautious and refer to README.md for more details."
)
# Validate prompt/image/video args for single or batch generation
assert (
args.input_image_or_video_path or args.batch_input_path
), "--input_image_or_video_path or --batch_input_path must be provided."
if inference_type == "video2world" and (not args.batch_input_path):
assert args.prompt, "--prompt is required for single video generation."
args.data_resolution = [640, 1024]
# Validate number of GPUs
num_gpus = int(os.getenv("WORLD_SIZE", 1))
assert num_gpus <= 1, "We support only single GPU inference for now"
# Create output folder
Path(args.video_save_folder).mkdir(parents=True, exist_ok=True)
sampling_config = SamplingConfig(
echo=True,
temperature=args.temperature,
top_p=args.top_p,
compile_sampling=True,
)
return sampling_config
def resize_input(video: torch.Tensor, resolution: list[int]):
r"""
Function to perform aspect ratio preserving resizing and center cropping.
This is needed to make the video into target resolution.
Args:
video (torch.Tensor): Input video tensor
resolution (list[int]): Data resolution
Returns:
Cropped video
"""
orig_h, orig_w = video.shape[2], video.shape[3]
target_h, target_w = resolution
scaling_ratio = max((target_w / orig_w), (target_h / orig_h))
resizing_shape = (int(math.ceil(scaling_ratio * orig_h)), int(math.ceil(scaling_ratio * orig_w)))
video_resized = torchvision.transforms.functional.resize(video, resizing_shape)
video_cropped = torchvision.transforms.functional.center_crop(video_resized, resolution)
return video_cropped
def load_image_from_list(flist, data_resolution: List[int]) -> dict:
"""
Function to load images from a list of image paths.
Args:
flist (List[str]): List of image paths
data_resolution (List[int]): Data resolution
Returns:
Dict containing input images
"""
all_videos = dict()
for img_path in flist:
ext = os.path.splitext(img_path)[1]
if ext in _IMAGE_EXTENSIONS:
# Read the image
img = Image.open(img_path)
# Convert to tensor
img = torchvision.transforms.functional.to_tensor(img)
static_vid = img.unsqueeze(0).repeat(NUM_TOTAL_FRAMES, 1, 1, 1)
static_vid = static_vid * 2 - 1
log.debug(
f"Resizing input image of shape ({static_vid.shape[2]}, {static_vid.shape[3]}) -> ({data_resolution[0]}, {data_resolution[1]})"
)
static_vid = resize_input(static_vid, data_resolution)
fname = os.path.basename(img_path)
all_videos[fname] = static_vid.transpose(0, 1).unsqueeze(0)
return all_videos
def read_input_images(batch_input_path: str, data_resolution: List[int]) -> dict:
"""
Function to read input images from a JSONL file.
Args:
batch_input_path (str): Path to JSONL file containing visual input paths
data_resolution (list[int]): Data resolution
Returns:
Dict containing input images
"""
# Read visual inputs from JSONL
flist = []
with open(batch_input_path, "r") as f:
for line in f:
data = json.loads(line.strip())
flist.append(data["visual_input"])
return load_image_from_list(flist, data_resolution=data_resolution)
def read_input_image(input_path: str, data_resolution: List[int]) -> dict:
"""
Function to read input image.
Args:
input_path (str): Path to input image
data_resolution (List[int]): Data resolution
Returns:
Dict containing input image
"""
flist = [input_path]
return load_image_from_list(flist, data_resolution=data_resolution)
def read_input_videos(batch_input_path: str, data_resolution: List[int], num_input_frames: int) -> dict:
r"""
Function to read input videos.
Args:
batch_input_path (str): Path to JSONL file containing visual input paths
data_resolution (list[int]): Data resolution
Returns:
Dict containing input videos
"""
# Read visual inputs from JSONL
flist = []
with open(batch_input_path, "r") as f:
for line in f:
data = json.loads(line.strip())
flist.append(data["visual_input"])
return load_videos_from_list(flist, data_resolution=data_resolution, num_input_frames=num_input_frames)
def read_input_video(input_path: str, data_resolution: List[int], num_input_frames: int) -> dict:
"""
Function to read input video.
Args:
input_path (str): Path to input video
data_resolution (List[int]): Data resolution
num_input_frames (int): Number of frames in context
Returns:
Dict containing input video
"""
flist = [input_path]
return load_videos_from_list(flist, data_resolution=data_resolution, num_input_frames=num_input_frames)
def load_videos_from_list(flist: List[str], data_resolution: List[int], num_input_frames: int) -> dict:
"""
Function to load videos from a list of video paths.
Args:
flist (List[str]): List of video paths
data_resolution (List[int]): Data resolution
num_input_frames (int): Number of frames in context
Returns:
Dict containing input videos
"""
all_videos = dict()
for video_path in flist:
ext = os.path.splitext(video_path)[-1]
if ext in _VIDEO_EXTENSIONS:
video, _, _ = torchvision.io.read_video(video_path, pts_unit="sec")
video = video.float() / 255.0
video = video * 2 - 1
# Resize the videos to the required dimension
nframes_in_video = video.shape[0]
if nframes_in_video < num_input_frames:
fname = os.path.basename(video_path)
log.warning(
f"Video {fname} has {nframes_in_video} frames, less than the requried {num_input_frames} frames. Skipping."
)
continue
video = video[-num_input_frames:, :, :, :]
# Pad the video to NUM_TOTAL_FRAMES (because the tokenizer expects inputs of NUM_TOTAL_FRAMES)
video = torch.cat(
(video, video[-1, :, :, :].unsqueeze(0).repeat(NUM_TOTAL_FRAMES - num_input_frames, 1, 1, 1)),
dim=0,
)
video = video.permute(0, 3, 1, 2)
log.debug(
f"Resizing input video of shape ({video.shape[2]}, {video.shape[3]}) -> ({data_resolution[0]}, {data_resolution[1]})"
)
video = resize_input(video, data_resolution)
fname = os.path.basename(video_path)
all_videos[fname] = video.transpose(0, 1).unsqueeze(0)
return all_videos
def load_vision_input(
input_type: str,
batch_input_path: str,
input_image_or_video_path: str,
data_resolution: List[int],
num_input_frames: int,
):
"""
Function to load vision input.
Note: We pad the frames of the input image/video to NUM_TOTAL_FRAMES here, and feed the padded video tensors to the video tokenizer to obtain tokens. The tokens will be truncated based on num_input_frames when feeding to the autoregressive model.
Args:
input_type (str): Type of input
batch_input_path (str): Folder containing input images or videos
input_image_or_video_path (str): Path to input image or video
data_resolution (List[int]): Data resolution
num_input_frames (int): Number of frames in context
Returns:
Dict containing input videos
"""
if batch_input_path:
log.info(f"Reading batch inputs from path: {batch_input_path}")
if input_type == "image" or input_type == "text_and_image":
input_videos = read_input_images(batch_input_path, data_resolution=data_resolution)
elif input_type == "video" or input_type == "text_and_video":
input_videos = read_input_videos(
batch_input_path,
data_resolution=data_resolution,
num_input_frames=num_input_frames,
)
else:
raise ValueError(f"Invalid input type {input_type}")
else:
if input_type == "image" or input_type == "text_and_image":
input_videos = read_input_image(input_image_or_video_path, data_resolution=data_resolution)
elif input_type == "video" or input_type == "text_and_video":
input_videos = read_input_video(
input_image_or_video_path,
data_resolution=data_resolution,
num_input_frames=num_input_frames,
)
else:
raise ValueError(f"Invalid input type {input_type}")
return input_videos
def prepare_video_batch_for_saving(video_batch: List[torch.Tensor]) -> List[np.ndarray]:
"""
Function to convert output tensors to numpy format for saving.
Args:
video_batch (List[torch.Tensor]): List of output tensors
Returns:
List of numpy arrays
"""
return [(video * 255).to(torch.uint8).permute(1, 2, 3, 0).cpu().numpy() for video in video_batch]
|