File size: 6,170 Bytes
13a8699 8961203 13a8699 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import importlib
import math
import os
from typing import List
import torch
import torchvision
from huggingface_hub import snapshot_download
from inference_config import DiffusionDecoderSamplingConfig
from cosmos1.models.autoregressive.diffusion_decoder.ar_diffusion_decoder_inference import diffusion_decoder_process_tokens
from cosmos1.models.autoregressive.diffusion_decoder.ar_diffusion_decoder_model import LatentDiffusionDecoderModel
from inference_utils import (
load_network_model,
load_tokenizer_model,
skip_init_linear,
)
from .log import log
from config_helper import get_config_module, override
TOKENIZER_COMPRESSION_FACTOR = [8, 16, 16]
DATA_RESOLUTION_SUPPORTED = [640, 1024]
NUM_CONTEXT_FRAMES = 33
def resize_input(video: torch.Tensor, resolution: list[int]):
r"""
Function to perform aspect ratio preserving resizing and center cropping.
This is needed to make the video into target resolution.
Args:
video (torch.Tensor): Input video tensor
resolution (list[int]): Data resolution
Returns:
Cropped video
"""
orig_h, orig_w = video.shape[2], video.shape[3]
target_h, target_w = resolution
scaling_ratio = max((target_w / orig_w), (target_h / orig_h))
resizing_shape = (int(math.ceil(scaling_ratio * orig_h)), int(math.ceil(scaling_ratio * orig_w)))
video_resized = torchvision.transforms.functional.resize(video, resizing_shape)
video_cropped = torchvision.transforms.functional.center_crop(video_resized, resolution)
return video_cropped
def read_input_videos(input_video: str) -> torch.tensor:
"""Utility to read the input video and return a torch tensor
Args:
input_video (str): A path to .mp4 file
data_resolution (list, optional): The . Defaults to [640, 1024].
Returns:
A torch tensor of the video
"""
video, _, _ = torchvision.io.read_video(input_video)
video = video.float() / 255.0
video = video * 2 - 1
if video.shape[0] > NUM_CONTEXT_FRAMES:
video = video[0:NUM_CONTEXT_FRAMES, :, :, :]
else:
log.info(f"Video doesn't have {NUM_CONTEXT_FRAMES} frames. Padding the video with the last frame.")
# Pad the video
nframes_in_video = video.shape[0]
video = torch.cat(
(video, video[-1, :, :, :].unsqueeze(0).repeat(NUM_CONTEXT_FRAMES - nframes_in_video, 1, 1, 1)),
dim=0,
)
video = video[0:NUM_CONTEXT_FRAMES, :, :, :]
video = video.permute(0, 3, 1, 2)
video = resize_input(video, DATA_RESOLUTION_SUPPORTED)
return video.transpose(0, 1).unsqueeze(0)
def run_diffusion_decoder_model(indices_tensor_cur_batch: List[torch.Tensor], out_videos_cur_batch):
"""Run a 7b diffusion model to enhance generation output
Args:
indices_tensor_cur_batch (List[torch.Tensor]): The index tensor(i.e) prompt + generation tokens
out_videos_cur_batch (torch.Tensor): The output decoded video of shape [bs, 3, 33, 640, 1024]
"""
diffusion_decoder_ckpt_path = snapshot_download("nvidia/Cosmos-1.0-Diffusion-7B-Decoder-DV8x16x16ToCV8x8x8")
dd_tokenizer_dir = snapshot_download("nvidia/Cosmos-1.0-Tokenizer-CV8x8x8")
tokenizer_corruptor_dir = snapshot_download("nvidia/Cosmos-1.0-Tokenizer-DV8x16x16")
diffusion_decoder_model = load_model_by_config(
config_job_name="DD_FT_7Bv1_003_002_tokenizer888_spatch2_discrete_cond_on_token",
config_file="cosmos1/models/autoregressive/diffusion_decoder/config/config_latent_diffusion_decoder.py",
model_class=LatentDiffusionDecoderModel,
encoder_path=os.path.join(tokenizer_corruptor_dir, "encoder.jit"),
decoder_path=os.path.join(tokenizer_corruptor_dir, "decoder.jit"),
)
load_network_model(diffusion_decoder_model, os.path.join(diffusion_decoder_ckpt_path, "model.pt"))
load_tokenizer_model(diffusion_decoder_model, dd_tokenizer_dir)
generic_prompt = dict()
aux_vars = torch.load(os.path.join(diffusion_decoder_ckpt_path, "aux_vars.pt"), weights_only=True)
generic_prompt["context"] = aux_vars["context"].cuda()
generic_prompt["context_mask"] = aux_vars["context_mask"].cuda()
output_video = diffusion_decoder_process_tokens(
model=diffusion_decoder_model,
indices_tensor=indices_tensor_cur_batch,
dd_sampling_config=DiffusionDecoderSamplingConfig(),
original_video_example=out_videos_cur_batch[0],
t5_emb_batch=[generic_prompt["context"]],
)
del diffusion_decoder_model
diffusion_decoder_model = None
gc.collect()
torch.cuda.empty_cache()
return output_video
def load_model_by_config(
config_job_name,
config_file="projects/cosmos_video/config/config.py",
model_class=LatentDiffusionDecoderModel,
encoder_path=None,
decoder_path=None,
):
config_module = get_config_module(config_file)
config = importlib.import_module(config_module).make_config()
config = override(config, ["--", f"experiment={config_job_name}"])
# Check that the config is valid
config.validate()
# Freeze the config so developers don't change it during training.
config.freeze() # type: ignore
if encoder_path:
config.model.tokenizer_corruptor["enc_fp"] = encoder_path
if decoder_path:
config.model.tokenizer_corruptor["dec_fp"] = decoder_path
# Initialize model
with skip_init_linear():
model = model_class(config.model)
return model
|