File size: 9,290 Bytes
13a8699
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import os
from argparse import ArgumentParser
from typing import List

import imageio
import nemo.lightning as nl
import numpy as np
import torch
from einops import rearrange
from huggingface_hub import snapshot_download
from megatron.core.inference.common_inference_params import CommonInferenceParams
from megatron.core.inference.engines.mcore_engine import MCoreEngine
from megatron.core.inference.text_generation_controllers.simple_text_generation_controller import (
    SimpleTextGenerationController,
)
from nemo.collections.llm.inference.base import _setup_trainer_and_restore_model
from nemo.lightning import io
from nemo.lightning.ckpt_utils import ckpt_to_context_subdir

from cosmos1.models.autoregressive.nemo.utils import run_diffusion_decoder_model
from discrete_video import DiscreteVideoFSQJITTokenizer
from cosmos1.models.autoregressive.utils.inference import load_vision_input
from .presets import presets as guardrail_presets
from .log import log

torch._C._jit_set_texpr_fuser_enabled(False)

TOKENIZER_COMPRESSION_FACTOR = [8, 16, 16]
NUM_CONTEXT_FRAMES = 33
NUM_INPUT_FRAMES_VIDEO = 9
LATENT_SHAPE = [5, 40, 64]
DATA_RESOLUTION = [640, 1024]


class CosmosMCoreTokenizerWrappper:
    """
    A small dummy wrapper to pass into the text generation controller.
    """

    def __init__(self):
        self.tokenizer = None
        self.eod = -1
        self.vocab_size = 64000

    def detokenize(self, tokens: List[int], remove_special_tokens: bool = False):
        return tokens

    def tokenize(self, prompt: List[int]):
        return prompt


def main(args):
    num_input_frames = 1 if args.input_type == "image" else NUM_INPUT_FRAMES_VIDEO

    vision_input_dict = load_vision_input(
        input_type=args.input_type,
        batch_input_path=None,
        input_image_or_video_path=args.input_image_or_video_path,
        data_resolution=DATA_RESOLUTION,
        num_input_frames=num_input_frames,
    )

    vision_input = list(vision_input_dict.values())[0].cuda()

    T, H, W = LATENT_SHAPE
    latent_context_t_size = 1 if args.input_type == "image" else 2
    num_tokens_to_generate = int(np.prod([T - latent_context_t_size, H, W]))

    # Encode and Tokenize
    if args.encoder_path == "nvidia/Cosmos-1.0-Tokenizer-DV8x16x16":
        args.encoder_path = os.path.join(snapshot_download(args.encoder_path), "encoder.jit")
    if args.decoder_path == "nvidia/Cosmos-1.0-Tokenizer-DV8x16x16":
        args.decoder_path = os.path.join(snapshot_download(args.decoder_path), "decoder.jit")
    video_tokenizer = DiscreteVideoFSQJITTokenizer(
        enc_fp=args.encoder_path,
        dec_fp=args.decoder_path,
        name="discrete_video_fsq",
        pixel_chunk_duration=NUM_CONTEXT_FRAMES,
        latent_chunk_duration=T,
    ).cuda()

    quantized_out, _ = video_tokenizer.encode(vision_input, pixel_chunk_duration=None)
    indices = video_tokenizer.fsq_quantizer.codes_to_indices(quantized_out.permute(0, 2, 3, 4, 1))
    indices = rearrange(indices, "B T H W -> B (T H W)")
    video_tokens = [indices[0][0:-num_tokens_to_generate].tolist()]

    # Load the nemo model
    if args.ar_model_dir in ["nvidia/Cosmos-1.0-Autoregressive-4B", "nvidia/Cosmos-1.0-Autoregressive-12B"]:
        args.ar_model_dir = os.path.join(snapshot_download(args.ar_model_dir, allow_patterns=["nemo/*"]), "nemo")
    model: io.TrainerContext = io.load_context(path=ckpt_to_context_subdir(args.ar_model_dir), subpath="model")

    strategy = nl.MegatronStrategy(
        tensor_model_parallel_size=1,
        pipeline_model_parallel_size=1,
        context_parallel_size=1,
        sequence_parallel=False,
        setup_optimizers=False,
        store_optimizer_states=False,
    )

    trainer = nl.Trainer(
        accelerator="gpu",
        devices=1,
        num_nodes=1,
        strategy=strategy,
        num_sanity_val_steps=0,
        plugins=nl.MegatronMixedPrecision(
            precision="bf16-mixed",
            params_dtype=torch.bfloat16,
            pipeline_dtype=torch.bfloat16,
            autocast_enabled=False,
            grad_reduce_in_fp32=False,
        ),
    )
    _setup_trainer_and_restore_model(path=args.ar_model_dir, trainer=trainer, model=model)

    inference_wrapped_model = model.get_inference_wrapper(torch.bfloat16, inference_batch_times_seqlen_threshold=1000)

    # Generate tokens
    text_generation_controller = SimpleTextGenerationController(
        inference_wrapped_model=inference_wrapped_model, tokenizer=CosmosMCoreTokenizerWrappper()
    )

    mcore_engine = MCoreEngine(text_generation_controller=text_generation_controller, max_batch_size=1)

    common_inference_params = CommonInferenceParams(
        temperature=args.temperature, top_p=args.top_p, num_tokens_to_generate=num_tokens_to_generate
    )

    log.info(f"Running Inference to generate {num_tokens_to_generate} tokens. This will take some time. ")
    results = mcore_engine.generate(
        prompts=video_tokens,
        add_BOS=False,
        encoder_prompts=None,
        common_inference_params=common_inference_params,
    )

    result = list(results)[0]
    prompt_tokens = torch.tensor(result.prompt_tokens).cuda()
    prompt_tokens[prompt_tokens == -1] = result.generated_tokens

    indices_tensor = prompt_tokens.unsqueeze(dim=0)
    indices_tensor = rearrange(
        indices_tensor,
        "B (T H W) -> B T H W",
        T=LATENT_SHAPE[0],
        H=LATENT_SHAPE[1],
        W=LATENT_SHAPE[2],
    )

    if torch.cuda.current_device() == 0:
        # Decode the generated tokens
        log.info("Running diffusion model on the generated result")
        video_decoded = video_tokenizer.decode(indices_tensor.cuda())
        out_video = (video_decoded * 0.5 + 0.5).clamp_(0, 1)

        if not args.disable_diffusion_decoder:
            del model
            del inference_wrapped_model
            del video_tokenizer
            model = None
            inference_wrapped_model = None
            video_tokenizer = None
            gc.collect()
            torch.cuda.empty_cache()

            out_video = run_diffusion_decoder_model(
                indices_tensor_cur_batch=[indices_tensor.squeeze()], out_videos_cur_batch=out_video
            )

        out_video = out_video[0].detach().clone()
        output_video = (out_video * 255).to(torch.uint8).permute(1, 2, 3, 0).cpu().numpy()

        if args.guardrail_dir:
            log.info("Running guardrails on the generated video")
            if args.guardrail_dir == "nvidia/Cosmos-1.0-Guardrail":
                args.guardrail_dir = snapshot_download(args.guardrail_dir)
            video_guardrail = guardrail_presets.create_video_guardrail_runner(checkpoint_dir=args.guardrail_dir)
            output_video = guardrail_presets.run_video_guardrail(output_video, video_guardrail)
            if output_video is None:
                raise ValueError("Guardrail blocked world generation.")

        # Write the video to disk
        imageio.mimsave(
            args.video_save_name,
            output_video,
            fps=25,  # We use a fps of 25 just for visualization.
        )

        log.info(f"Saved to {args.video_save_name}")


if __name__ == "__main__":
    parser = ArgumentParser()
    parser.add_argument("--input_type", type=str, default="video", help="Type of input", choices=["image", "video"])
    parser.add_argument(
        "--input_image_or_video_path", required=True, type=str, help="The path to the input video to run inference"
    )
    parser.add_argument(
        "--video_save_name", default="./nemo_generated_video.mp4", type=str, help="The path to generated video"
    )
    parser.add_argument(
        "--ar_model_dir",
        default="nvidia/Cosmos-1.0-Autoregressive-4B",
        type=str,
        help="The path to the nemo autoregressive model",
    )
    parser.add_argument(
        "--encoder_path", default="nvidia/Cosmos-1.0-Tokenizer-DV8x16x16", type=str, help="The path to encoder"
    )
    parser.add_argument(
        "--decoder_path", default="nvidia/Cosmos-1.0-Tokenizer-DV8x16x16", type=str, help="The path to the decoder"
    )
    parser.add_argument(
        "--guardrail_dir", default="nvidia/Cosmos-1.0-Guardrail", type=str, help="The path to the guardrails"
    )
    parser.add_argument("--top_p", default=0.8, type=float, help="The top_p inference parameter ")
    parser.add_argument("--temperature", default=1, type=int, help="Sampling temperature")
    parser.add_argument("--disable_diffusion_decoder", action="store_true", help="Disable diffusion decoder")

    args = parser.parse_args()

    main(args)