File size: 14,956 Bytes
13a8699 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 |
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from dataclasses import dataclass
from functools import lru_cache
from pathlib import Path
from typing import TYPE_CHECKING, Annotated, Callable, Optional
import torch
import torch.nn.functional as F
from einops import rearrange, repeat
from megatron.core.models.common.embeddings.rotary_pos_embedding import RotaryEmbedding
from nemo.collections.llm.gpt.model.llama import Llama3Config, LlamaModel
from nemo.collections.llm.utils import Config
from nemo.lightning import OptimizerModule, io
from nemo.lightning.base import teardown
from torch import Tensor, nn
from .log import log
class RotaryEmbedding3D(RotaryEmbedding):
"""Rotary Embedding3D for Cosmos Language model.
Args:
kv_channels (int): Projection weights dimension in multi-head attention. Obtained
from transformer config
rotary_base (int, optional): Base period for rotary position embeddings. Defaults to
10000.
use_cpu_initialization (bool, optional): If False, initialize the inv_freq directly
on the GPU. Defaults to False
latent_shape: The shape of the latents produced by the video after being tokenized
"""
def __init__(
self,
seq_len: int,
kv_channels: int,
training_type: str = None,
rotary_base: int = 10000,
use_cpu_initialization: bool = False,
latent_shape=[5, 40, 64],
apply_yarn=False,
original_latent_shape=None,
beta_fast=32,
beta_slow=1,
scale=None,
max_position_embeddings=None,
original_max_position_embeddings=None,
extrapolation_factor=1,
attn_factor=1,
) -> None:
super().__init__(
kv_channels=kv_channels,
rotary_base=rotary_base,
rotary_percent=1.0,
use_cpu_initialization=use_cpu_initialization,
)
self.latent_shape = latent_shape
self.device = "cpu" if use_cpu_initialization else torch.cuda.current_device()
self.dim = kv_channels
self.rope_theta = rotary_base
self.apply_yarn = apply_yarn
self.original_latent_shape = original_latent_shape
self.beta_fast = beta_fast
self.beta_slow = beta_slow
self.scale = scale
self.max_position_embeddings = max_position_embeddings
self.original_max_position_embeddings = original_max_position_embeddings
self.attn_factor = attn_factor
dim_h = self.dim // 6 * 2
dim_t = self.dim - 2 * dim_h
self.dim_spatial_range = torch.arange(0, dim_h, 2)[: (dim_h // 2)].float().to(self.device) / dim_h
spatial_inv_freq = 1.0 / (self.rope_theta**self.dim_spatial_range)
self.dim_temporal_range = torch.arange(0, dim_t, 2)[: (dim_t // 2)].float().to(self.device) / dim_t
temporal_inv_freq = 1.0 / (self.rope_theta**self.dim_temporal_range)
if self.apply_yarn:
assert self.original_latent_shape is not None, "Original latent shape required."
assert self.beta_slow is not None, "Beta slow value required."
assert self.beta_fast is not None, "Beta fast value required."
scale_factors_spatial = self.get_scale_factors(spatial_inv_freq, self.original_latent_shape[1])
spatial_inv_freq = spatial_inv_freq * scale_factors_spatial
scale_factors_temporal = self.get_scale_factors(temporal_inv_freq, self.original_latent_shape[0])
temporal_inv_freq = temporal_inv_freq * scale_factors_temporal
self.mscale = float(self.get_mscale(self.scale) * self.attn_factor)
self.spatial_inv_freq = spatial_inv_freq
self.temporal_inv_freq = temporal_inv_freq
max_seq_len_cached = max(self.latent_shape)
if self.apply_yarn and seq_len > max_seq_len_cached:
max_seq_len_cached = seq_len
self.max_seq_len_cached = max_seq_len_cached
self.freqs = self.get_freqs_non_repeated(self.max_seq_len_cached)
def get_mscale(self, scale: float = 1.0) -> float:
"""Get the magnitude scaling factor for YaRN."""
if scale <= 1:
return 1.0
return 0.1 * math.log(scale) + 1.0
def get_scale_factors(self, inv_freq: torch.Tensor, original_seq_len: int) -> torch.Tensor:
"""Get the scale factors for YaRN."""
# Calculate the high and low frequency cutoffs for YaRN. Note: `beta_fast` and `beta_slow` are called
# `high_freq_factor` and `low_freq_factor` in the Llama 3.1 RoPE scaling code.
high_freq_cutoff = 2 * math.pi * self.beta_fast / original_seq_len
low_freq_cutoff = 2 * math.pi * self.beta_slow / original_seq_len
# Obtain a smooth mask that has a value of 0 for low frequencies and 1 for high frequencies, with linear
# interpolation in between.
smooth_mask = torch.clamp((inv_freq - low_freq_cutoff) / (high_freq_cutoff - low_freq_cutoff), min=0, max=1)
# For low frequencies, we scale the frequency by 1/self.scale. For high frequencies, we keep the frequency.
scale_factors = (1 - smooth_mask) / self.scale + smooth_mask
return scale_factors
def get_freqs_non_repeated(self, max_seq_len_cached: int, offset: int = 0) -> Tensor:
dtype = self.spatial_inv_freq.dtype
device = self.spatial_inv_freq.device
self.seq = (torch.arange(max_seq_len_cached, device=device, dtype=dtype) + offset).cuda()
assert hasattr(
self, "latent_shape"
), "Latent shape is not set. Please run set_latent_shape() method on rope embedding. "
T, H, W = self.latent_shape
half_emb_t = torch.outer(self.seq[:T], self.temporal_inv_freq.cuda())
half_emb_h = torch.outer(self.seq[:H], self.spatial_inv_freq.cuda())
half_emb_w = torch.outer(self.seq[:W], self.spatial_inv_freq.cuda())
emb = torch.cat(
[
repeat(half_emb_t, "t d -> t h w d", h=H, w=W),
repeat(half_emb_h, "h d -> t h w d", t=T, w=W),
repeat(half_emb_w, "w d -> t h w d", t=T, h=H),
]
* 2,
dim=-1,
)
emb = rearrange(emb, "t h w d -> (t h w) 1 1 d").float()
return emb
@lru_cache(maxsize=32)
def forward(self, seq_len: int, offset: int = 0, packed_seq: bool = False) -> Tensor:
if self.spatial_inv_freq.device.type == "cpu":
# move `inv_freq` to GPU once at the first micro-batch forward pass
self.spatial_inv_freq = self.spatial_inv_freq.to(device=torch.cuda.current_device())
max_seq_len_cached = self.max_seq_len_cached
if self.apply_yarn and seq_len > max_seq_len_cached:
max_seq_len_cached = seq_len
self.max_seq_len_cached = max_seq_len_cached
emb = self.get_freqs_non_repeated(self.max_seq_len_cached)
return emb
if TYPE_CHECKING:
from nemo.collections.common.tokenizers.tokenizer_spec import TokenizerSpec
@dataclass
class CosmosConfig(Llama3Config):
qk_layernorm: bool = True
rope_dim: str = "3D"
vocab_size: int = 64000
activation_func = F.silu
def configure_model(self, tokenizer) -> "MCoreGPTModel":
model = super().configure_model(tokenizer)
if self.rope_dim == "3D":
model.rotary_pos_emb = RotaryEmbedding3D(
seq_len=self.seq_length,
training_type=None,
kv_channels=self.kv_channels,
max_position_embeddings=self.seq_length,
original_max_position_embeddings=self.original_seq_len if hasattr(self, "original_seq_len") else None,
rotary_base=self.rotary_base,
apply_yarn=True if hasattr(self, "apply_yarn") else False,
scale=self.yarn_scale if hasattr(self, "yarn_scale") else None,
extrapolation_factor=1,
attn_factor=1,
beta_fast=self.yarn_beta_fast if hasattr(self, "yarn_beta_fast") else 32,
beta_slow=self.yarn_beta_slow if hasattr(self, "yarn_beta_slow") else 1,
latent_shape=[5, 40, 64],
original_latent_shape=self.original_latent_shape if hasattr(self, "original_latent_shape") else None,
)
return model
@dataclass
class CosmosConfig4B(CosmosConfig):
rotary_base: int = 500_000
seq_length: int = 15360
num_layers: int = 16
hidden_size: int = 4096
ffn_hidden_size: int = 14336
num_attention_heads: int = 32
num_query_groups: int = 8
layernorm_epsilon: float = 1e-5
use_cpu_initialization: bool = True
make_vocab_size_divisible_by: int = 128
kv_channels: int = 128
@dataclass
class CosmosConfig12B(CosmosConfig):
rotary_base: int = 500_000
seq_length: int = 15360
num_layers: int = 40
hidden_size: int = 5120
ffn_hidden_size: int = 14336
num_attention_heads: int = 32
num_query_groups: int = 8
layernorm_epsilon: float = 1e-5
use_cpu_initialization: bool = True
make_vocab_size_divisible_by: int = 128
kv_channels: int = 128
original_latent_shape = [3, 40, 64]
apply_yarn: bool = True
yarn_beta_fast: int = 4
yarn_beta_slow: int = 1
yarn_scale: int = 2
original_seq_len = 8192
class CosmosModel(LlamaModel):
def __init__(
self,
config: Annotated[Optional[CosmosConfig], Config[CosmosConfig]] = None,
optim: Optional[OptimizerModule] = None,
tokenizer: Optional["TokenizerSpec"] = None,
model_transform: Optional[Callable[[nn.Module], nn.Module]] = None,
):
super().__init__(config or CosmosConfig4B(), optim=optim, tokenizer=tokenizer, model_transform=model_transform)
self.config = config
@io.state_transform(
source_key=(
"model.layers.*.feed_forward.w1.weight",
"model.layers.*.feed_forward.w3.weight",
),
target_key="decoder.layers.*.mlp.linear_fc1.weight",
)
def _mlp_glu(ctx: io.TransformCTX, w1, w3):
return torch.cat((w1, w3), axis=0)
@io.state_transform(
source_key=(
"model.layers.*.attention.wq.weight",
"model.layers.*.attention.wk.weight",
"model.layers.*.attention.wv.weight",
),
target_key="decoder.layers.*.self_attention.linear_qkv.weight",
)
def _import_qkv_cosmos(ctx: io.TransformCTX, q, k, v):
megatron_config = ctx.target.config
head_num = megatron_config.num_attention_heads
num_query_groups = megatron_config.num_query_groups
heads_per_group = head_num // num_query_groups
hidden_size = megatron_config.hidden_size
head_size = megatron_config.kv_channels
old_tensor_shape = q.size()
new_q_tensor_shape = (head_num, head_size) + old_tensor_shape[1:]
new_kv_tensor_shape = (num_query_groups, head_size) + old_tensor_shape[1:]
q = q.view(*new_q_tensor_shape)
k = k.view(*new_kv_tensor_shape)
v = v.view(*new_kv_tensor_shape)
qkv_weights_l = []
for i in range(num_query_groups):
qkv_weights_l.append(q[i * heads_per_group : (i + 1) * heads_per_group, :, :])
qkv_weights_l.append(k[i : i + 1, :, :])
qkv_weights_l.append(v[i : i + 1, :, :])
qkv_weights = torch.cat(qkv_weights_l)
assert qkv_weights.ndim == 3, qkv_weights.shape
assert qkv_weights.shape[0] == (heads_per_group + 2) * num_query_groups, qkv_weights.shape
assert qkv_weights.shape[1] == head_size, qkv_weights.shape
assert qkv_weights.shape[2] == old_tensor_shape[1], qkv_weights.shape
qkv_weights = qkv_weights.reshape([head_size * (head_num + 2 * num_query_groups), hidden_size])
return qkv_weights
@io.model_importer(CosmosModel, "pt")
class PTCosmosImporter(io.ModelConnector["PTCosmosModel", CosmosModel]):
def init(self) -> CosmosModel:
return CosmosModel(self.config, tokenizer=self.tokenizer)
def apply(self, output_path: Path) -> Path:
pt_model_path = str(self)
cosmos_model_state_dict = torch.load(pt_model_path, map_location="cpu")
for k, v in cosmos_model_state_dict.items():
# convert to float 32 (for cpu conversion) (Original model is bf16)
cosmos_model_state_dict[k] = v.float()
# Small wrapper since nemo calls source.state_dict() , to get state dict
class WrapperCosmos:
def __init__(self, model_state_dict):
self.model_state_dict = model_state_dict
def state_dict(self):
return self.model_state_dict
source = WrapperCosmos(cosmos_model_state_dict)
target = self.init()
trainer = self.nemo_setup(target)
self.convert_state(source, target)
self.nemo_save(output_path, trainer)
log.info(f"Converted PT Cosmos model to Nemo, model saved to {output_path}")
teardown(trainer, target)
del trainer, target
return output_path
def convert_state(self, source, target):
mapping = {
"model.tok_embeddings.weight": "embedding.word_embeddings.weight",
"model.layers.*.attention.wo.weight": "decoder.layers.*.self_attention.linear_proj.weight",
"model.layers.*.attention.q_norm.weight": "decoder.layers.*.self_attention.q_layernorm.weight",
"model.layers.*.attention.k_norm.weight": "decoder.layers.*.self_attention.k_layernorm.weight",
"model.layers.*.attention_norm.weight": "decoder.layers.*.self_attention.linear_qkv.layer_norm_weight",
"model.layers.*.feed_forward.w2.weight": "decoder.layers.*.mlp.linear_fc2.weight",
"model.layers.*.ffn_norm.weight": "decoder.layers.*.mlp.linear_fc1.layer_norm_weight",
"model.norm.weight": "decoder.final_layernorm.weight",
"model.output.weight": "output_layer.weight",
}
return io.apply_transforms(source, target, mapping=mapping, transforms=[_import_qkv_cosmos, _mlp_glu])
@property
def tokenizer(self):
return None
@property
def config(self):
if "4B" in str(self) or "4b" in str(self):
return CosmosConfig4B()
elif "12B" in str(self) or "12b" in str(self):
return CosmosConfig12B()
else:
raise ValueError("Unable to infer model size from checkpoint")
|