File size: 3,133 Bytes
7a9a23a
 
 
f80d464
7a9a23a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f80d464
7a9a23a
f80d464
7a9a23a
f80d464
7a9a23a
f80d464
7a9a23a
f80d464
7a9a23a
f80d464
7a9a23a
f80d464
7a9a23a
f80d464
7a9a23a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
---
license: apache-2.0
base_model: mistralai/Mistral-7B-v0.1
datasets: NeuralNovel/Neural-DPO
tags:
- generated_from_trainer
model-index:
- name: out
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.4.0`
```yaml
base_model: mistralai/Mistral-7B-v0.1
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
is_mistral_derived_model: true

load_in_8bit: false
load_in_4bit: false
strict: false

rl: dpo
datasets:
  - path: NeuralNovel/Neural-DPO
    split: train
    type: chatml.intel
    format: "[INST] {instruction} [/INST]"
    no_input_format: "[INST] {instruction} [/INST]"    
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./out

sequence_len: 8192
sample_packing: false
pad_to_sequence_len: true
eval_sample_packing: false

wandb_project:
wandb_entity:
wandb_watch:
wandb_name: Neural-DPO
wandb_log_model:

gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 12
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.000005

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 0
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
  bos_token: "<s>"
  eos_token: "</s>"
  unk_token: "<unk>"

```

</details><br>

Creator: <a href="https://huggingface.co/NovoCode">NovoCode</a>

Community Organization: <a href="https://huggingface.co/ConvexAI">ConvexAI</a>

Discord: <a href="https://discord.gg/rJXGjmxqzS">Join us on Discord</a>

## Model description

This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on [Neural-DPO](https://huggingface.co/datasets/NeuralNovel/Neural-DPO).

This model should excel at question answering across a rich array of subjects across a wide range of domains such as literature, scientific research, and theoretical inquiries.

## ExLlamaV2 Quants

ExLlamaV2 quants are available from [bartowski here](https://huggingface.co/bartowski/Mistral-NeuralDPO-v0.5-exl2)

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 1602

### Framework versions

- Transformers 4.38.0.dev0
- Pytorch 2.2.0+cu121
- Datasets 2.17.1
- Tokenizers 0.15.0