File size: 8,178 Bytes
953c23a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import os
import torch
import numpy as np
from typing import BinaryIO, List

from imagebind import imagebind_model
from imagebind.models.imagebind_model import ModalityType
from imagebind.models.multimodal_preprocessors import SimpleTokenizer, TextPreprocessor


V2_URL = "https://huggingface.co/jondurbin/videobind-v0.2/resolve/main/videobind.pth"
V2_PATH = "./.checkpoints/videobind-v0.2.pth"
BPE_PATH = "./models/bpe_simple_vocab_16e6.txt.gz"
TOKENIZER = SimpleTokenizer(bpe_path=BPE_PATH)
LENGTH_TOKENIZER = SimpleTokenizer(bpe_path=BPE_PATH, context_length=1024)
TOKEN_CHUNK_SIZE = 74

def get_imagebind_v2(path: str=V2_PATH):
    if not os.path.isfile(path):
        os.makedirs(os.path.dirname(path), exist_ok=True)
        torch.hub.download_url_to_file(V2_URL, path, progress=True)
    imagebind_model = torch.load(path)
    return imagebind_model


def load_and_transform_text(text, device):
    if text is None:
        return None
    tokens = [TOKENIZER(t).unsqueeze(0).to(device) for t in text]
    tokens = torch.cat(tokens, dim=0)
    return tokens

def split_text_by_token_limit(text, tokenizer, max_tokens=TOKEN_CHUNK_SIZE):
    def fits_in_token_limit(text_segment):
        tokens = tokenizer(text_segment)
        tokens = tokens[tokens != 0][1:-1].tolist()
        return len(tokens) <= max_tokens

    def recursive_split(text, delimiters):
        if fits_in_token_limit(text):
            return [text]
        if not delimiters:
            return split_by_tokens(text)
        delimiter = delimiters[0]
        parts = text.split(delimiter)
        result = []
        current_segment = ""
        for part in parts:
            candidate_segment = current_segment + (delimiter if current_segment else '') + part
            if fits_in_token_limit(candidate_segment):
                current_segment = candidate_segment
            else:
                if current_segment:
                    result.append(current_segment)
                current_segment = part
        if current_segment:
            result.append(current_segment)
        final_result = []
        for segment in result:
            if fits_in_token_limit(segment):
                final_result.append(segment)
            else:
                final_result.extend(recursive_split(segment, delimiters[1:]))
        return final_result

    def split_by_tokens(text):
        tokens = tokenizer(text)
        tokens = tokens[tokens != 0][1:-1].tolist()
        chunks = np.array_split(tokens, int(len(tokens) / max_tokens) or 1)
        return [
            tokenizer.decode(segment_tokens)
            for segment_tokens in chunks
        ]

    return recursive_split(text, ['\n', '.', '!', '?', ',', ' '])

def load_and_transform_text_chunks(text, device):
    if not text:
        return []
    all_tokens = LENGTH_TOKENIZER(text)
    all_tokens = all_tokens[all_tokens != 0][1:-1].tolist()

    return [
        load_and_transform_text([segment], device)
        for segment in split_text_by_token_limit(text, LENGTH_TOKENIZER)
    ]


class ImageBind:
    def __init__(self, device="cuda:0", v2=False):
        self.device = device
        self.v2 = v2
        if v2:
            if not os.path.exists(V2_PATH):
                os.makedirs(os.path.dirname(V2_PATH), exist_ok=True)
                torch.hub.download_url_to_file(
                    V2_URL,
                    V2_PATH,
                    progress=True,
                )
            self.imagebind = torch.load(V2_PATH)
        else:
            self.imagebind = imagebind_model.imagebind_huge(pretrained=True)
        self.imagebind.eval()
        self.imagebind.to(self.device)

    def generate_text_embeddings(self, text: str):
        if not self.v2:
            return self.imagebind({
                ModalityType.TEXT: load_and_transform_text([text], self.device)
            })[ModalityType.TEXT]
        chunks = load_and_transform_text_chunks(text, self.device)
        embeddings = [
            self.imagebind({ModalityType.TEXT: chunk})[ModalityType.TEXT]
            for chunk in chunks
        ]
        return torch.mean(torch.stack(embeddings), dim=0)

    """ Deactivating full embeddings as they are not used in the current implementation
    def get_inputs(self, video_file: BinaryIO) -> dict:
        audio_file = video_utils.copy_audio(video_file.name)
        try:
            duration = video_utils.get_video_duration(video_file.name)
            video_data = data.load_and_transform_video_data(
                [video_file.name],
                self.device,
            )
            audio_data = data.load_and_transform_audio_data(
                [audio_file.name],
                self.device,
            )
            inputs = {
                ModalityType.VISION: video_data,
                ModalityType.AUDIO: audio_data,
            }
            return inputs
        finally:
            audio_file.close()

    @torch.no_grad()
    def embed(self, descriptions: List[str], video_files: List[BinaryIO]) -> Embeddings:
        return_value = None
        for idx in range(len(descriptions)):
            inputs = self.get_inputs(video_files[idx])
            embeddings = self.imagebind(inputs)
            text_embeddings = self.generate_text_embeddings(descriptions[idx])
            if not return_value:
                return_value = Embeddings(
                    video=embeddings[ModalityType.VISION],
                    audio=embeddings[ModalityType.AUDIO],
                    description=text_embeddings,
                )
            else:
                return_value.video = torch.cat((return_value.video, embeddings[ModalityType.VISION]))
                return_value.audio = torch.cat((return_value.audio, embeddings[ModalityType.AUDIO]))
                return_value.description = torch.cat((return_value.description, text_embeddings))
        return return_value

    @torch.no_grad()
    def embed_only_video(self, video_files: List[BinaryIO]) -> Embeddings:
        video_filepaths = [video_file.name for video_file in video_files]
        durations = [video_utils.get_video_duration(f.name) for f in video_files]
        embeddings = self.imagebind({
            ModalityType.VISION: [
                data.load_and_transform_video_data(
                    [video_filepaths[idx]],
                    self.device,
                )[0]
                for idx in range(len(video_filepaths))
            ]
        })
        return Embeddings(
            video=embeddings[ModalityType.VISION],
        )

    @torch.no_grad()
    def embed_video_and_text(self, video_files: List[BinaryIO], descriptions: List[str]) -> Embeddings:
        video_filepaths = [video_file.name for video_file in video_files]
        durations = [video_utils.get_video_duration(f.name) for f in video_files]
        embeddings = self.imagebind({
            ModalityType.VISION: [
                data.load_and_transform_video_data(
                    [video_filepaths[idx]],
                    self.device,
                )[0]
                for idx in range(len(video_filepaths))
            ],
        })
        description_embeddings = torch.stack([
            self.generate_text_embeddings(description)
            for description in descriptions
        ])
        return Embeddings(
            video=embeddings[ModalityType.VISION],
            description=description_embeddings,
        )

    @torch.no_grad()
    def embed_text(self, texts: List[str]) -> torch.Tensor:
        return_value = None
        for text in texts:
            emb = self.generate_text_embeddings(text)
            if not return_value:
                return_value = emb
            else:
                return_value = torch.cat((return_value, emb))
        return return_value
    """
    
    @torch.no_grad()
    def embed_text(self, texts: List[str]) -> torch.Tensor:
        embeddings = []
        for text in texts:
            emb = self.generate_text_embeddings(text)
            embeddings.append(emb)
        
        if not embeddings:
            return None
        
        # Stack all embeddings along dimension 0
        return torch.stack(embeddings, dim=0)