--- tags: - autotrain - tabular - regression - tabular-regression datasets: - Notaspy1234/autotrain-data-Autotrain3 --- # Model Trained Using AutoTrain - Problem type: Tabular regression ## Validation Metrics - r2: 0.9753017864826334 - mse: 0.3290419495851166 - mae: 0.47130432128906286 - rmse: 0.5736217826975512 - rmsle: 0.057378419858521094 - loss: 0.5736217826975512 ## Best Params - learning_rate: 0.022993157585548683 - reg_lambda: 0.0030417803769039035 - reg_alpha: 0.17755049688249555 - subsample: 0.33171622212758833 - colsample_bytree: 0.10545502763287017 - max_depth: 8 - early_stopping_rounds: 387 - n_estimators: 15000 - eval_metric: rmse ## Usage ```python import json import joblib import pandas as pd model = joblib.load('model.joblib') config = json.load(open('config.json')) features = config['features'] # data = pd.read_csv("data.csv") data = data[features] predictions = model.predict(data) # or model.predict_proba(data) # predictions can be converted to original labels using label_encoders.pkl ```