File size: 21,635 Bytes
24491e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "1e99de7a",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"--2024-06-20 13:18:56-- https://docs-assets.developer.apple.com/ml-research/datasets/mobileclip/mobileclip_s0.pt\n",
"Resolving docs-assets.developer.apple.com (docs-assets.developer.apple.com)... 17.253.73.203, 17.253.73.201\n",
"Connecting to docs-assets.developer.apple.com (docs-assets.developer.apple.com)|17.253.73.203|:443... connected.\n",
"HTTP request sent, awaiting response... 416 Requested Range Not Satisfiable\n",
"\n",
" The file is already fully retrieved; nothing to do.\n",
"\n",
"--2024-06-20 13:18:58-- https://raw.githubusercontent.com/apple/ml-mobileclip/main/mobileclip/configs/mobileclip_s0.json\n",
"Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.108.133, 185.199.109.133, 185.199.110.133, ...\n",
"Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.108.133|:443... connected.\n",
"HTTP request sent, awaiting response... 416 Range Not Satisfiable\n",
"\n",
" The file is already fully retrieved; nothing to do.\n",
"\n"
]
}
],
"source": [
"\n",
"!pip install -q git+https://github.com/apple/ml-mobileclip\n",
"!mkdir -p checkpoints\n",
"!wget --continue https://docs-assets.developer.apple.com/ml-research/datasets/mobileclip/mobileclip_s0.pt -P checkpoints\n",
"!wget --continue https://raw.githubusercontent.com/apple/ml-mobileclip/main/mobileclip/configs/mobileclip_s0.json -P checkpoints\n",
"!pip install -q --upgrade coremltools"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "801db364",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"scikit-learn version 1.2.2 is not supported. Minimum required version: 0.17. Maximum required version: 1.1.2. Disabling scikit-learn conversion API.\n"
]
}
],
"source": [
"import torch\n",
"import coremltools as ct\n",
"import mobileclip\n",
"import numpy as np\n",
"from PIL import Image"
]
},
{
"cell_type": "markdown",
"id": "26f7dcff",
"metadata": {},
"source": [
"# 1. Export TextEncoder"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "8f89976b",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/usr/local/anaconda3/envs/py30/lib/python3.10/site-packages/mobileclip/modules/common/transformer.py:125: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!\n",
" if seq_len != self.num_embeddings:\n"
]
}
],
"source": [
"\n",
"\n",
"#device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n",
"device = \"cpu\"\n",
"model, _, preprocess = mobileclip.create_model_and_transforms('mobileclip_s0', pretrained='./checkpoints/mobileclip_s0.pt')\n",
"tokenizer = mobileclip.get_tokenizer('mobileclip_s0')\n",
"\n",
"model=model.to(device)\n",
"model = model.eval()\n",
"\n",
"text_encoder = model.text_encoder\n",
"example_input = tokenizer(\"a photo of a cat\", return_tensors=\"pt\")\n",
"traced_model = torch.jit.trace(text_encoder, example_input)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "a727c3d1",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"torch.Size([1, 77])"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"example_input.shape"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "a38a3ca0",
"metadata": {},
"outputs": [],
"source": [
"# https://github.com/apple/ml-mobileclip/blob/main/mobileclip/configs/mobileclip_s0.json\n",
"max_seq_length = 77"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "c87abd71",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Converting PyTorch Frontend ==> MIL Ops: 27%|βββ | 110/402 [00:00<00:00, 687.59 ops/s]Saving value type of int64 into a builtin type of int32, might lose precision!\n",
"Converting PyTorch Frontend ==> MIL Ops: 100%|ββββββββββ| 401/402 [00:00<00:00, 1694.77 ops/s]\n",
"Running MIL frontend_pytorch pipeline: 100%|ββββββββββ| 5/5 [00:00<00:00, 172.42 passes/s]\n",
"Running MIL default pipeline: 100%|ββββββββββ| 78/78 [00:02<00:00, 31.32 passes/s] \n",
"Running MIL backend_mlprogram pipeline: 100%|ββββββββββ| 12/12 [00:00<00:00, 219.77 passes/s]\n"
]
}
],
"source": [
"\n",
"text_encoder_model = ct.convert(\n",
" traced_model,\n",
" convert_to=\"mlprogram\",\n",
" minimum_deployment_target=ct.target.iOS16,\n",
" inputs=[ct.TensorType(name=\"prompt\",\n",
" shape=[1,max_seq_length],\n",
" dtype=np.int32)],\n",
" outputs=[ct.TensorType(name=\"embOutput\", dtype=np.float32)],\n",
" )\n",
"text_encoder_model.save(\"TextEncoder_mobileclip_s0.mlpackage\")"
]
},
{
"cell_type": "markdown",
"id": "617e4e6b",
"metadata": {},
"source": [
"## Validate export precision"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "fd6af02a",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Tokenized text: tensor([49406, 320, 1125, 539, 320, 2368, 49407, 0, 0, 0],\n",
" dtype=torch.int32)\n"
]
}
],
"source": [
"# Load the model\n",
"te_ml_model = ct.models.MLModel('TextEncoder_mobileclip_s0.mlpackage')\n",
"\n",
"# Choose a tokenizer, here we use the clip tokenizer\n",
"text = tokenizer(\"a photo of a cat\").to(torch.int32)\n",
"text = text[:,:max_seq_length]\n",
"print(\"Tokenized text: \", text[0, :10])\n",
"\n",
"# # Or use CLIPTokenizerFast\n",
"# text = tokenizer(\"a photo of a cat\", return_tensors=\"pt\", padding=\"max_length\", max_length=max_seq_length)\n",
"# text = text.data['input_ids'].to(torch.int32)\n",
"\n",
"orig_features = text_encoder(text)\n",
"predictions = te_ml_model.predict({'prompt': text})\n",
"out = traced_model(text)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "c29d0a98",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Original PyTorch TextEncoder ckpt out for \"a photo of a cat\":\n",
">>> tensor([ 0.1062, 0.3889, 0.2455, 0.2906, 0.3474, -0.0871, 0.0244, -0.1012,\n",
" 0.4056, -0.0591], grad_fn=<SliceBackward0>)\n",
"Traced PyTorch TextEncoder ckpt out for \"a photo of a cat\":\n",
">>> tensor([ 0.1062, 0.3889, 0.2455, 0.2906, 0.3474, -0.0871, 0.0244, -0.1012,\n",
" 0.4056, -0.0591], grad_fn=<SliceBackward0>)\n",
"\n",
"CoreML TextEncoder ckpt out for \"a photo of a cat\":\n",
">>> [ 0.10631 0.388583 0.24500522 0.29059237 0.3471204 -0.0872687\n",
" 0.024912 -0.10095407 0.4052309 -0.05918849]\n"
]
}
],
"source": [
"print(\"Original PyTorch TextEncoder ckpt out for \\\"a photo of a cat\\\":\\n>>>\", orig_features[0, :10])\n",
"print(\"Traced PyTorch TextEncoder ckpt out for \\\"a photo of a cat\\\":\\n>>>\", out[0, :10])\n",
"print(\"\\nCoreML TextEncoder ckpt out for \\\"a photo of a cat\\\":\\n>>>\", predictions['embOutput'][0, :10])"
]
},
{
"cell_type": "markdown",
"id": "3c0d9c70",
"metadata": {},
"source": [
"You can see that there is some loss in precision, but it is still acceptable."
]
},
{
"cell_type": "markdown",
"id": "ca182b4a",
"metadata": {},
"source": [
"# 2. Export ImageEncoder"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "68521589",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"torch.Size([1, 3, 256, 256])\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/var/folders/tm/mkjhhwzd5hb8y3tkrr72_zcw0000gq/T/ipykernel_43113/694208471.py:4: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
" example_input = torch.tensor(preprocess(img))\n"
]
}
],
"source": [
"image_encoder = model.image_encoder\n",
"\n",
"img = Image.open(\"./sample_images/IMG_4085.jpeg\")\n",
"example_input = torch.tensor(preprocess(img))\n",
"#reshape to 1,3,256,256\n",
"example_input = example_input.unsqueeze(0)\n",
"print(example_input.shape)\n",
"traced_model = torch.jit.trace(image_encoder, example_input)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "6817c413",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Original PyTorch ImageEncoder ckpt out for jpg:\n",
">>> tensor([ 0.0180, 0.0550, 0.0086, 0.0529, 0.0514, 0.0155, -0.0660, 0.1181,\n",
" 0.0274, -0.0218], grad_fn=<SliceBackward0>)\n"
]
}
],
"source": [
"example_output = image_encoder(example_input)\n",
"print(\"Original PyTorch ImageEncoder ckpt out for jpg:\\n>>>\", example_output[0, :10])"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "123c9b1c",
"metadata": {},
"outputs": [],
"source": [
"from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD\n",
"image_mean = IMAGENET_DEFAULT_MEAN\n",
"image_std = IMAGENET_DEFAULT_STD"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "8f66a99c",
"metadata": {},
"outputs": [],
"source": [
"import torchvision.transforms as transforms\n",
"\n",
"class Wrapper(torch.nn.Module):\n",
" def __init__(self, model):\n",
" super().__init__()\n",
" self.model = model\n",
" _means = IMAGENET_DEFAULT_MEAN\n",
" _stds = IMAGENET_DEFAULT_STD\n",
" self.stds = torch.tensor(_stds).half()[:,None,None]\n",
" self.means = torch.tensor(_means).half()[:,None,None]\n",
"\n",
" transform_model = torch.nn.Sequential(\n",
" transforms.Normalize(mean=image_mean,\n",
" std=image_std)\n",
" )\n",
"\n",
" def forward(self, input): \n",
" input = input/255.0\n",
" intput = self.transform_model(input)\n",
" output = self.model(input) \n",
" return output\n",
"\n",
"# Instantiate the Wrapper model passing the original PyTorch FCN model\n",
"wrapped_model = Wrapper(traced_model)"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "b3da3350",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"wrapped PyTorch ImageEncoder ckpt out for jpg:\n",
">>> tensor([ 0.0180, 0.0501, 0.0073, 0.0510, 0.0515, 0.0164, -0.0680, 0.1125,\n",
" 0.0306, -0.0220])\n",
"Traced wrapped PyTorch ImageEncoder ckpt out for jpg:\n",
">>> tensor([ 0.0180, 0.0501, 0.0073, 0.0510, 0.0515, 0.0164, -0.0680, 0.1125,\n",
" 0.0306, -0.0220])\n"
]
}
],
"source": [
"i = np.asarray(img.resize((256, 256)))\n",
"i = i.astype(\"float32\")\n",
"i = np.transpose(i, (2, 0, 1))\n",
"i = np.expand_dims(i, 0)\n",
"i = torch.from_numpy(i)\n",
"\n",
"with torch.no_grad():\n",
" out = wrapped_model(i)\n",
"\n",
"print(\"wrapped PyTorch ImageEncoder ckpt out for jpg:\\n>>>\", out[0, :10])\n",
"\n",
"traced_model = torch.jit.trace(wrapped_model, i)\n",
"\n",
"with torch.no_grad():\n",
" out = traced_model(i)\n",
"\n",
"print(\"Traced wrapped PyTorch ImageEncoder ckpt out for jpg:\\n>>>\", out[0, :10])"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "304ae7b0",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Model is not in eval mode. Consider calling '.eval()' on your model prior to conversion\n",
"Converting PyTorch Frontend ==> MIL Ops: 100%|ββββββββββ| 723/724 [00:00<00:00, 3783.41 ops/s]\n",
"Running MIL frontend_pytorch pipeline: 100%|ββββββββββ| 5/5 [00:00<00:00, 69.84 passes/s]\n",
"Running MIL default pipeline: 100%|ββββββββββ| 78/78 [00:02<00:00, 30.22 passes/s]\n",
"Running MIL backend_mlprogram pipeline: 100%|ββββββββββ| 12/12 [00:00<00:00, 71.49 passes/s]\n"
]
}
],
"source": [
"image_input = ct.ImageType(name=\"colorImage\", shape=i.shape)\n",
"image_encoder_model = ct.converters.convert(\n",
" traced_model,\n",
" convert_to=\"mlprogram\",\n",
" inputs=[image_input],\n",
" outputs=[ct.TensorType(name=\"embOutput\", dtype=np.float32)],\n",
" minimum_deployment_target=ct.target.iOS16,\n",
")\n",
"image_encoder_model.save(\"ImageEncoder_mobileclip_s0.mlpackage\")"
]
},
{
"cell_type": "markdown",
"id": "f3c5008e",
"metadata": {},
"source": [
"## Validate export"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "759bb57d",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/var/folders/tm/mkjhhwzd5hb8y3tkrr72_zcw0000gq/T/ipykernel_43113/3839791618.py:5: DeprecationWarning: BICUBIC is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BICUBIC instead.\n",
" imgPIL = imgPIL.resize((256, 256), Image.BICUBIC)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Traced wrapped PyTorch ImageEncoder ckpt out for jpg:\n",
">>> tensor([ 0.0180, 0.0501, 0.0073, 0.0510, 0.0515, 0.0164, -0.0680, 0.1125,\n",
" 0.0306, -0.0220], grad_fn=<SliceBackward0>)\n",
"\n",
"CoreML ImageEncoder ckpt out for jpg:\n",
">>> [ 0.01794434 0.04956055 0.0073967 0.05114746 0.05157471 0.01622009\n",
" -0.0680542 0.11236572 0.03044128 -0.02180481]\n"
]
}
],
"source": [
"import torchvision.transforms as transforms\n",
"\n",
"ie_ml_model = ct.models.MLModel('ImageEncoder_mobileclip_s0.mlpackage')\n",
"imgPIL = Image.open(\"./sample_images/IMG_4085.jpeg\")\n",
"imgPIL = imgPIL.resize((256, 256), Image.BICUBIC)\n",
"\n",
"img_np = np.asarray(imgPIL).astype(np.float32) # (256, 256, 3)\n",
"img_np = img_np[np.newaxis, :, :, :] # (1, 256, 256, 3)\n",
"img_np = np.transpose(img_np, [0, 3, 1, 2]) # (1, 3, 256, 256)\n",
"torch_tensor_input = torch.from_numpy(img_np)\n",
"\n",
"predictions = ie_ml_model.predict({'colorImage': imgPIL})\n",
"out = wrapped_model(torch_tensor_input)\n",
"print(\"Traced wrapped PyTorch ImageEncoder ckpt out for jpg:\\n>>>\", out[0, :10])\n",
"print(\"\\nCoreML ImageEncoder ckpt out for jpg:\\n>>>\", predictions['embOutput'][0, :10])"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "a71abf7b",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"There are 9 images in the dataset, each has a feature of shape torch.Size([512])\n",
"\n",
"\n",
"Text: a photo of a dog\n",
"Most similar images:\n",
"IMG_4061.jpeg 50.45%\n",
"IMG_2134.jpeg 45.32%\n",
"21-09-07_1153.jpeg 3.20%\n",
"IMG_0519.jpeg 1.01%\n",
"IMG_4085.jpeg 0.01%\n",
"\n",
"\n",
"Text: a dog\n",
"Most similar images:\n",
"IMG_2134.jpeg 85.73%\n",
"IMG_4061.jpeg 12.42%\n",
"21-09-07_1153.jpeg 1.19%\n",
"IMG_0519.jpeg 0.65%\n",
"IMG_4085.jpeg 0.00%\n",
"\n",
"\n",
"Text: dogs\n",
"Most similar images:\n",
"IMG_0519.jpeg 79.85%\n",
"IMG_2134.jpeg 16.58%\n",
"IMG_4061.jpeg 3.17%\n",
"21-09-07_1153.jpeg 0.20%\n",
"IMG_6172.jpeg 0.12%\n"
]
}
],
"source": [
"import os\n",
"import pickle\n",
"\n",
"path = r\"./sample_images\"\n",
"# this list holds all the image filename\n",
"images = []\n",
"\n",
"def image_resize(image):\n",
" image = image.resize((256, 256), Image.BICUBIC)\n",
" return image\n",
"\n",
"# creates a ScandirIterator aliased as files\n",
"with os.scandir(path) as files:\n",
" # loops through each file in the directory\n",
" for file in files:\n",
" if file.name.endswith('.jpeg'):\n",
" # adds only the image files to the flowers list\n",
" images.append(file.name)\n",
"\n",
"def extract_features(path, images):\n",
" num_images = len(images)\n",
" images_features = []\n",
" counter = 0\n",
" for i in range(0, num_images):\n",
" images_preprocess = image_resize(Image.open(os.path.join(path,images[i])).convert(\"RGB\")) \n",
" print(i)\n",
" cur_features = ie_ml_model.predict({'colorImage': images_preprocess})\n",
" cur_features = torch.tensor(cur_features['embOutput']).float().to(device)\n",
" cur_features /= cur_features.norm(dim=-1, keepdim=True)\n",
" images_features.append(cur_features)\n",
"\n",
" images_features = torch.cat(images_features)\n",
" print(\"Features shape {}\".format(images_features.shape))\n",
" return images_features.cpu().numpy()\n",
" \n",
"data = {}\n",
"p = r\"./ml_mobileclip_s0_features.pkl\"\n",
"\n",
"# check if the pickled file exists\n",
"if os.path.exists(p):\n",
" with open(p,'rb') as file:\n",
" data = pickle.load(file)\n",
"else:\n",
" print(\"Extracting features\")\n",
" images_features = extract_features(path, images)\n",
" for i in range(len(images_features)):\n",
" data[images[i]] = images_features[i]\n",
"\n",
" with open(p,'wb') as file:\n",
" pickle.dump(data,file)\n",
" \n",
" \n",
"# get a list of the filenames\n",
"filenames = np.array(list(data.keys()))\n",
"\n",
"# get a list of just the features\n",
"feat = np.array(list(data.values()))\n",
"feat = torch.tensor(feat).float().to(device)\n",
"\n",
"# reshape so that there are n samples of 512 vectors\n",
"#feat = feat.reshape(-1,512)\n",
"\n",
"print(f\"There are {len(filenames)} images in the dataset, each has a feature of shape {feat[0].shape}\")\n",
"\n",
"text_input = [\"a photo of a dog\", \"a dog\", \"dogs\"]\n",
"#text = tokenizer(\"a photo of a cat\").to(torch.int32)\n",
"texts_input_tokenized = tokenizer(text_input).to(torch.int32)\n",
"texts_input_tokenized = texts_input_tokenized[:,:max_seq_length]\n",
"\n",
"for i in range(len(text_input)):\n",
" text_input_tokenized = [texts_input_tokenized[i]]\n",
" text_features = te_ml_model.predict({'prompt': text_input_tokenized})\n",
" text_features = torch.tensor(text_features['embOutput']).float().to(device)\n",
" text_features /= text_features.norm(dim=-1, keepdim=True)\n",
" # calculate the similarity between the text features and the image features\n",
" similarity = (100.0 * text_features @ feat.T).softmax(dim=-1)\n",
" print(\"\\n\")\n",
" print(f\"Text: {text_input[i]}\")\n",
" values, indices = similarity[0].topk(5)\n",
" print(\"Most similar images:\")\n",
" for value, index in zip(values, indices):\n",
" print(f\"{filenames[index]:<40} {100 * value.item():.2f}%\") \n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.13"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|