--- library_name: transformers license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - PQVD metrics: - accuracy model-index: - name: distilhubert-finetuned-grade results: - task: name: Audio Classification type: audio-classification dataset: name: PQVD type: PQVD config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.6703296703296703 --- # distilhubert-finetuned-grade This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the PQVD dataset. It achieves the following results on the evaluation set: - Loss: 1.7494 - Accuracy: 0.6703 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6335 | 1.0 | 92 | 0.5993 | 0.6593 | | 0.4618 | 2.0 | 184 | 0.6011 | 0.6703 | | 0.3811 | 3.0 | 276 | 0.7119 | 0.5604 | | 0.4686 | 4.0 | 368 | 0.7788 | 0.6593 | | 0.2984 | 5.0 | 460 | 0.8130 | 0.6044 | | 0.2004 | 6.0 | 552 | 0.8343 | 0.6484 | | 0.3806 | 7.0 | 644 | 0.9339 | 0.6264 | | 0.1813 | 8.0 | 736 | 1.1104 | 0.5055 | | 0.1335 | 9.0 | 828 | 1.1915 | 0.6813 | | 0.2548 | 10.0 | 920 | 1.2242 | 0.6703 | | 0.5109 | 11.0 | 1012 | 1.4604 | 0.6923 | | 0.155 | 12.0 | 1104 | 1.5649 | 0.6593 | | 0.1678 | 13.0 | 1196 | 1.6666 | 0.6703 | | 0.1302 | 14.0 | 1288 | 1.7023 | 0.6813 | | 0.0068 | 15.0 | 1380 | 1.7494 | 0.6703 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.6.0+cu124 - Datasets 3.3.2 - Tokenizers 0.21.0